Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структурные превращения

    Причиной склонности сплавов к межкристаллитной коррозии чаще всего являются структурные превращения на границах зерен, которые превращают эту узкую зону в мало поляризующийся анод (см. с. 331), который и подвергается усиленному коррозионному разрушению. Сложность этого процесса и зависимость его от многих факторов затрудняет истолкование всех случаев межкристаллитной коррозии иногда даже для одной какой-либо металлической системы одной теорией. [c.420]


    При сварке печных труб из аустенитных сталей большое внимание необходимо уделять удалению шлаковых включений из сварных швов, так как они играют роль центров кристаллизации для о-фазы. Чем больше неметаллических включений в шве, тем больше в нем образуется о-фазы. Сварные швы двухфазной стали также подвержены структурным превращениям с появлением о-фазы, но в еще более широком интервале высоких температур (500—875°С). [c.158]

    При изучении структурных превращений в процессе термообработки коксы прокаливались в силитовых печах при стандартных условиях (1300°С, 5 часов), в печи Таммана с изотермической выдержкой в течение 2 ч и в среде вакуума в камере высокотемпературной рентгеновской установки УВД-2000. Съемка дифрактограмм проводилась на дифрактометрах ДРОН-2,0, ДРОН-3,0 с СиКаИзлучением рентгеновской трубки и малоугповой рентгеновской установке КРМ-1. Ряд исследований проводился с использованием метода радиального распределения атомной плотности (р.р.а.). [c.117]

    Выполненные исследования вносят существенный вклад в представления о механизмах структурных превращений нефтяных коксов на уровне кристаллической решетки в процессе термолиза и дают ценную информацию по выбору направлений оптимизации как процессов получения, так и термообработки нефтяных коксов. Разработанные методики могут широко использоваться в исследовательской практике при разработке новых видов коксов, подборе оптимальных видов сырья, оптимизации технологии и контроля качества нефтяных коксов в промышленных технологиях. [c.121]

    Многочисленные исследования, касающиеся в основном предельных напряжений сдвига нефтей и битумов, а также практика работы нефтеперерабатывающих заводов подтверждают правильность представлений, составляющих основу качественной схемы структурных превращений в нефтяных многокомпонентных системах в широком интервале варьирования температур и объясняют противоречия между прежними взглядами и результатами работы промышленных установок [112]. [c.41]

    С изменением температуры в НДС могут протекать структурные превращения. При низких температурах образуются золи и студни. Температура образования НДС определяется составом системы, количеством склонных к ассоциированию соединений. [c.184]

    Циклоалканы более сложного строения не обнаружены в нефтях. Циклоалканам присущи следующие особенности геометрическая изомерия молекул способность к структурным превращениям в процессах нефтепереработки положительное влияние на качество топливных и масляных дистиллятов связь строения с генезисом и метаморфизмом нефти. [c.207]


    С ростом температуры происходят структурные превращения нефтяных систем [2] согласно схеме связно-дисперсная система <=> сво- [c.175]

    Различная способность к графитации коксов объясняется неодинаковыми возможностями для ориентации ароматических макромолекул, образующихся при нагреве органических веществ, что определяется двумя факторами химическим строением исходного вещества [1—4] и условиями его карбонизации )[5, 6]. В этих работах показано, что изменение условий карбонизации, т. е. приложение давления на стадии карбонизации к неграфитирующемуся в обычных условиях веществу позволяет получить графитирующийся кокс. Под давлением в материале формируются участки с предпочтительной ориентацией ароматических макромолекул, что обусловливает получение кокса с высокой способностью к графитации. Сравнительное исследование электронных свойств (термоэлектродвижущей силы, электропроводности) кокса фенолформальдегидной смолы (ФФС), полученного без приложения давления и под давлением, показало, что основные этапы структурных превращений в этих материалах практически одинаковы, несмотря на их различную способность к графитации [7]. [c.188]

    При термической обработке от 1300 до температуры графитации при 2400 С этот кокс расщиряется меньше, чем кокс из смесевого сырья. Наибольшее расширение в области графитации дает кокс, полученный из смеси, содержащей 75 % каменноугольной смолы. Относительно объемных изменений до 1300 С сравнительных данных получить не удалось, так как коксы промышленных проб отличались в исходном состоянии по содержанию летучих веществ примерно в 3 раза и объемные изменения кокса в этом температурном интервале определялись как структурными превращениями, так и выходом летучих продуктов. [c.132]

    Предлагаемый метод расчленения процесса переработки полимеров на элементарные стадии иллюстрируется схемой, приведенной на рис. 1.16. Исходное сырье подготавливается к формованию, проходя через серию элементарных стадий. Эти элементарные стадии могут предшествовать формованию или осуществляться одновременно с ним. Во время этих стадий и после них происходят структурные превращения. Наконец, могут понадобиться отделочные операции (типографское нанесение надписей, отделка и т. д.), выполняемые после окончания процессов формования структуры. [c.34]

    Особенности структурных превращений в нефтяных дисперсных системах [c.114]

    Линейная зависимость 1пЛг от (1/Т), соответствующая постоянству энергии активации диффузии, нарушается в области структурных превращений в мембранной матрице. Установлено, что переход аморфной фазы в упорядоченную сопровождается [c.86]

    Описываемые структурные превращения тесно связаны с генезисом антрацита, общей структурой месторождения и пласта. В частности, степень структурной анизотропии с повышением температуры прокаливания изменяется по-разному. Наиболее заметно это проявляется в анизотропии физических свойств при 600° С в антрацитах высокой степени метаморфизма с явной структурной анизотропией. [c.174]

    Высокотемпературное растяжение СУ приводит к анизотропии ряда его свойств. Наблюдаемые при этом изменения структуры весьма близки по своему характеру к структурным превращениям, которые происходят при высокотемпературном изометрическом нагреве углеродного волокна. [c.501]

    По мере повышения температуры карбонизации нефтяные остатки, смолистые отходы нефтехимии и низкоплавкие пеки, полученные из них, претерпевают физико-химические и структурные превращения. Системы, содержащие неплавкие и не растворимые в дисперсионной среде расплава компоненты, в том числе высокоплавкие изотропные и мезофазные пеки, не обладают способностью переходить в состояние молекулярных растворов и свободнодисперсных систем. [c.165]

    Химические методы переработки основаны на глубоких структурных превращениях углеводородов, содс[ жа-ии1хся в нефти нлн нефтепродуктах, п(JД влиянием тс.шс-ратуры, давления, катализаторов, химических реагеггоп. К ним относятся различные виды термического и каталитического крекинга нефтепродуктов и др. [c.231]

    Новый метод выжига кокса отличается от ранее применяемого тем, что температура стенкн труб из аустенитной стали 20Х25Н20С2 сохраняется на высоком уровне, поэтому удается избежать нежелательных структурных превращений металла (а-фазы при 450—750 °С) и ухудшения его прочностных характеристик. Кроме того, интенсификацией процесса выжига кокса удается сократить время полного декоксования и простой печи пиролиза. [c.200]

    Из большого арсенала разработанных к настоящему моменту методов наиболее адекватную информацию о состоянии НДС тяжелого состава можно получить лишь при помощи неразрушающих методов, не связанных с добавлением растворителей или наложением интенсивных механических нагрузок на исследуемые нефтяные системы. Методы типа гель-нроникающей хроматографии, фотоколориметрии, седиментационные, реологические и другие методы являются малопригодньп и для точного измерения сфуктурных характеристик НДС и определения точек фазовых переходов. Они частично разрушают надмолекулярную структуру исследуемых систем, изменяют толщину и химический состав сольватных оболочек, а также приводят к диссоциации, либо рекомбинации части соединений, существенно искажая характеристики исследуемых нефтяных систем. Использование разрушающих методов, по словам некоторых исследователей, является лишь первым пробным шагом в изучении структурных превращений в НДС. Наиболее приемлемыми в этом отношении являются некоторые спектральные методы, а также различные виды микроскопии, которые, конечно же, не могут удовлетворить весь спектр исследований в области нефтяных дисперсных систем, но вполне достаточны для целей данной работы. [c.9]


    Экспериментальные температурные кривые изменения концентрации парамагнитных центров (ПМЦ) действительно содержат ряд экстремумов. В работе [3] приведены типичные зависимости концентрации различных носителей парамагнетизма в различных нефтяных системах от изменения температуры (рис. 1). В работе [16] были проведены уникальные исследования изменения концентрации парамагнитных центров в тяжелых нефтепродуктах при их нагреве до высоких температур. На рис. 2 приведены полученные кривые, которые имеют точки перегиба, соответствующие структурным фазовым переходам. Здесь же приводятся зависимости так называемой изотропной составляющей, которая определяется по характеру сверхтонкой структуры ЭПР-спектров и указывает на преимущественно свободное или структурно связанное состояние ванадиловых комплексов, что также является показателем структурных превращений в НДС. [c.10]

    В ходе процесса облагораживания нефтяной углерод проходит через метастабильные состояния, стремясь к достижению равновесия. Исследованию условий, при которых углеродистые материалы могут переходить самопроизвольно из одного состояния в другое, посвящены работы [168, 137, 138, 20, 127]. В отличие от индивидуальных углеводородов (см. с. 156) нзобарно-изотермный потенциал (АО) в процессе облагораживания разновидностей углеродов изменяется по сложной зависимости из-за структурных превращений, происходящих в их массе при деструкции. [c.187]

    В диапазоне температур каробнизации (400—900°С) исследованы термохимические и структурные превращения коксов из фенолформальдегидной смолы, различающихся по способности графитироваться (полученных под давлением и без давления). Методами термогра-виметрмчеокого и хроматографического анализов показано, что, несмотря на разную графитируемость, заметных отличий в термохимических превращениях коксов из ФФС не наблюдается. Этот вывод подтверждается данными рентгеноструктурного анализа и ЭПР. [c.268]

    Представляет интерес выяснить изменения изобарно-изотермп-ческих потенциалов ДС углеродистого материала в процессе графитации с учетом структурных превращений, происходящих в массе кокса, и сопоставить их с теми же показателями для графита, полученного нз этого же кокса, в котором структурные изменения уже произошли. На рис. 57 [137] показана зависимость С для вещества, полученного графитацией при 2773 К нефтяного кокса, от температуры (кривая ). Аналогичную монотонно убывающую зависимость термодинамического потенциала графита от температуры ранее получил Россини [168] (кривая 2). Зависимость АО для прокаленного (при 1473 К) нефтяного кокса от температуры (кривая 3) имеет сложный вид, обусловленный структурными изменениями, происходящими в массе кокса в процессе его нагревания. Анализируя кривую 4, представляющую собой температур- [c.188]

    Шулеиов и Ярмочкина [138], базируясь на структурных превращениях нефтяного углерода, сопровождающихся на разных стадиях выделением и поглощением энергии, а также скачкообразным измененЕгем удельных объемов, характеризуют процесс облагораживания нефтяных коксов как размытый фазовый переход первого рода. [c.189]

    При проектировании, изготовлении и ремонте аппаратов и оборудования необходимо не только знание использованных материалов, но и методов их обработки для достижения необходимых эксплуатационных свойств. А это невозможно без знания фазовых и структурных превращений, связанных с нагревом и охлаждением, аоздействием внешних нагрузок (механических повреждений), электромагнитного поля, радиационного облучения. [c.7]

    Наиболее полно тонкая структура характеризуется рентгенострук-турным методом. Более чувствительным к структурным превращениям параметром является величина среднеквадратичных смещений атомов. [c.96]

    Особенности формирования мюфоструктуры нефтяных коксов обусловлены термохимическими и структурными превращениями сырья коксования,что,в свою очередь, определяется происхождением сщзья.его химическим и компонентным составом. [c.90]

    Структурные превращения полимера (на основе фурфурилового спирта) в процессе направленного пиролиза. / Фиалков А, С., Кол-пикова Е. Ф., Клепикова Г. В. и др. — Химия твердого топлива, [c.696]

    В свете полученных данных механизм структурных превращений цри двухстадийном обассеривании можно объяснить следующими процессами. [c.112]

    На участках 1-7 и 8 - 14 в системе происходят структурные превращения, обусловливающие различие конфигураций элементов пространственной структуры, и соответственно проявление системой принципиально новых физико-механических и физико-химических свойств. Изменяется прочность структурных образований, химический состав, порядок расположения молекул, межмолекулярные силы взаимодействия и т.п. Например, можно предположить, что участок 1-3 включает зону упруго-хрупких (1-2) и упруго-пластичных (2-3) гелей. На участке 3-7 могуг проявляться зоны кинетически неустойчивого состояния золя (4-6) или кинетически устойчивого состояния (6-7). На участке 1 - 7 Moiyr проявляться эффекты плавления (зона 6-7), стеклования (зона 3-4). [c.63]

    Как правило, структурные превращения приобретают массовый характер в кризисных состояниях системы, и в частности в области фазовых переходов, а так.же при готовности системы к химическим превращениям составляющих ее веществ. В этот момент элементы ассоциативных или агрегативных комбинаций находятся в интенсивных флуктуациях с возможной миграцией от одного структурного образования к другому. Следует отметить, что указанный взаимообмен может происходить и в системе, находящейся в термодинамическом равновесии, когда каждый переход мгновенно компенсируется подобным обратным переходом, уравновешивающихм систему. В статистической механике это положение известно под названием принципа детального равновесия, характерного, как правило, для изотропных систем, обладающих полной симметрией, с точки зрения распределения событий в структуре системы. [c.186]

    Увеличение концентрации ПМЦ выше 200 С (рис. 8-3) связано с началом пиролиза. Структурные превращения фурфуро-лофенолоформальдегидного связующего (ФФФС) с повышением температуры приводят к появлению максимума ЭПР-поглоще-ния при 600 С (рис. 8-4, измерение в порошке). Положение этого максимума определяется структурой полимера в состоянии резита. Большое влияние на положение максимума ЭПР поглощения оказывает режим нагрева. Со скоростью нагрева связаны процессы ароматизации. [c.471]


Библиография для Структурные превращения: [c.321]   
Смотреть страницы где упоминается термин Структурные превращения: [c.160]    [c.90]    [c.25]    [c.18]    [c.170]    [c.75]    [c.83]    [c.189]    [c.112]    [c.160]    [c.161]    [c.45]   
Смотреть главы в:

Химия твердого тела -> Структурные превращения


Деформация полимеров (1973) -- [ c.297 ]

Основы технологии переработки пластических масс (1983) -- [ c.20 ]

Структура и свойства полимерных покрытий (1982) -- [ c.0 ]

Полиэфирные покрытия структура и свойства (1987) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте