Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Защитные покрытия низколегированной

    Гончаревский М,С,, Коррозия и стойкость в морской воде труб из углеродистой стали и низколегированных сталей с защитными покрытиями, М,, [c.103]

    Проектируя морское сооружение из низколегированной стали, конструктор, при заданной прочности мог бы взять меньшую толщину стенок, чем при использовании углеродистой стали. Однако при более высокой скорости коррозии это может привести к ускоренному разрушению конструкции. Таким образом, при проектировании, в принципе, следовало бы предусматривать больший допуск на коррозию низколегированных сталей, чем для углеродистой стали. В то же время при использовании подходящего защитного покрытия более высокие прочностные характеристики низколегированных сталей позволяют добиться общего выигрыша. Катодную защиту в случае низколегированных сталей следует применять с большой осторожностью, поскольку эти сплавы нередко более склонны к водородному охрупчиванию, чем углеродистая сталь. [c.57]


    Зависимость коррозионных потерь от времени экспозиции для образцов, испытывавшихся на среднем уровне прилива, имеет интересные особенности, являющиеся серьезным аргументом в пользу изложенной выше теории биологического контроля скорости коррозии в морской воде. Эта кривая представлена на рис. 122. Видно, что в течение первого года экспозиции скорость коррозии стали была очень велика (примерно 250 мкм/год), почти вдвое выше, чем при экспозиции в условия> постоянного погружения. Образцы в зоне прилива также подвергались обрастанию (в основном усоногими раками), но оно происходило значительно медленнее, чем при постоянном погружении в том же месте, и только через год на металле образовался слой, обладающий высокими защитными свойствами. После этого (в интервале от 1 до 2 года испытаний) скорость коррозии упала до очень малого значения (менее 10 мкм/год). Медленное обрастание и больший доступ кислорода к поверхности металла в зоне прилива (по сравнению с погруженными образцами) задержали возникновение полностью анаэробных условий на металлической поверхности, что, очевидно, и проявилось в увеличении периода защиты металла вследствие обрастания. Если бы рост бактерий на этой стадии можно было затормозить, то скорость коррозии осталась бы на очень низком уровне, сделав возможной длительную эксплуатацию углеродистой конструкционной стали без защитных покрытий. Это было бы аналогично случаю атмосферной коррозии стареющих (низколегированных) сталей, при многолетней эксплуатации которых практически не требуется никакого ухода. [c.444]

    В целях экономии дефицитных металлов - широко применять низколегированные стали, а также различные футеровки и защитные покрытия. [c.14]

    Перечисленные выше мероприятия по предотвращению водородного расслоения металла обеспечивают и надежную защиту от сероводородного растрескивания. Вместе с тем существует ряд мероприятий, предотвращающих растрескивание стали, но не гарантирующих отсутствие расслоения в сероводородных средах. Однако, поскольку расслоение представляет собой значительно менее опасный вид разрушения, чем растрескивание, то положительное значение этих мероприятий очевидно. Основными такими мероприятиями являются 1) применение стали с ограниченным пределом прочности и снижение рабочих (используемых при прочностных расчетах) напряжений в металле 2) использование низколегированных сталей с повышенной стойкостью к сероводородному растрескиванию 3) термическая обработка элементов оборудования для снятия внутренних напряжений, возникших в процессе их изготовления 4) химико-технологическая обработка — нейтрализация среды. Кроме того, практика защиты от сероводородного растрескивания включает использование апробированных применительно к этому виду разрушения ингибиторов, стойких сплавов и защитных покрытий. [c.98]


    Из низколегированных незащищенных сталей сооружают конструкции на открытом воздухе, а также конструкции, защитное покрытие которых нельзя обновлять после начала эксплуатации, так как именно здесь в наибольщей степени проявляется коррозионная стойкость этих сталей. В настоящее время эти стали широко используют в таких сооружениях, как автодорожные мосты, а во многих странах они нашли применение и в строительстве зданий, где успешно используется их современный архитектурный внешний вид [18]. [c.21]

    Для повышения адгезии и защитных свойств покрытий, низколегированных механически зачищен ных сталей [c.167]

    Перечисленные методы защиты в особо агрессивных условиях могут применяться совместно например, часто имеет место комбинированная защита покрытиями на органической основе и наложенным извне током. Применение металлов и сплавов без защитных покрытий для конструкций в подземных условиях весьма ограничено. Пригодные для указанной цели высоколегированные стали и некоторые цветные металлы обычно нецелесообразно применять по экономическим соображениям. Попытки использования низколегированных сталей без дополнительной защиты не дали положительных результатов. Таким образом, практически приходится применять для указанных конструкций обычные черные металлы, защищенные покрытиями, и меньше — цветные металлы (для кабелей — свинец, алюминий). [c.195]

    Для ряда почв даже максимальный глубинный показатель скорости коррозии различных низколегированных сталей, как правило, находится в допустимых пределах ошибок опытов. Металлургический процесс изготовления стали не влияет на скорость ее коррозии в почвенных условиях [59, 60]. Среднюю, ориентировочную скорость коррозии железа и низколегированных сталей в ряде почв считают равной 0,2-0,4 мм/год. Эти данные относятся к коррозии незащищенных образцов или элементов конструкций небольшого размера, когда отсутствует ускоряющее влияние блуждающих токов. На протяженных объектах, например трубопроводах, скорость увеличения глубины местных коррозионных поражений может возрастать в десятки раз. При осуществлении защитных мероприятий (нанесение покрытий, электрохимическая защита конструкций и т. д.) скорость коррозии, напротив, может быть снижена в десятки раз. [c.136]

    В морской воде защита стальных конструкций обеспечивается при потенциале —0,80 В (н. к. э.). При более катодных потенциалах, например —1,10 В, возникает опасность появления избыточных гидроксил-ионов и большого объема образующегося водорода. Амфотерные металлы и некоторые защитные органические покрытия разрушаются под действием щелочей. Эндосмотические эффекты и образование водорода под слоем краски могут вызывать ее отслаивание. Эти явления часто наблюдаются на участках конструкций, расположенных вблизи анода. Выделяющийся водород может разрушать сталь, особенно высокопрочную низколегированную. Углеродистые стали обычно не подвергаются водородному разрушению в условиях катодной защиты. При избыточной Катодной защите выделение водорода может приводить к катастрофическому растрескиванию высокопрочных сталей (с пределом текучести выше 1000 МПа) при наличии растягивающих напряжений (водородное растрескивание под напряжением). Одним из ядов , способствующих ускоренному проникновению водорода в металл, являются сульфиды, присутствующие в загрязненной морской воде, а также в донных отложениях, где могут обитать сульфатвосстанавливающие бактерии. [c.171]

    В заключение следует указать, что возможны и другие сочетания способов защиты оборудования от сероводородного растрескивания. Например 1) применение низколегированных сталей с повышенной стойкостью к сероводородному растрескиванию, снижение величины рабочих напряжений, термическая обработка, прибавка к расчетной толщине стенки для компенсирования потери вследствие общей коррозии 2) нанесение защитных лакокрасочных покрытий, введение ингибиторов (в этом случае металл в дефектных или разрушившихся со временем участках покрытия будет защищен действием ингибиторов) 3) термическая обработка оборудования, нейтрализация среды и т. д. [c.104]

    Защитно-декоративные покрытия деталей из углеродистой и низколегированной сталей [c.162]

    Если бы агрессивные ионы проникали через лакокрасочные пленки так же легко, как и влага, то защитные свойства лакокрасочного покрытия были бы почти обесценены и использование ряда технически доступных металлов, например сплавов алюминия, низколегированных видов стали и особенно магниевых сплавов, было бы крайне затруднено, а порой и невозможно. [c.24]

    Пентапласт используют в качестве коррозионностойкого конструкционного материала, а также защитного покрытия [33, с. 115 34]. Пентапластов ге покрытия можно наносить методом газопламенного напыления, окунанием в суспензию полимера или распылением ее с последующим спеканием порошка. Для защитных обкладок можно применять листовой пентапласт. Из него изготовляют оборудование, работающее при повышенных температурах в агрессивных средах фасонную и запорную арматуру, детали насосов, диафрагмы клапа-. нов, трубы, прокладки и пр. За рубелшм пентапласт известен под названием пентон и широко используется в химической промышленности для изготовления трубопроводов, вентиляционных каналов, дистилляционных колонн, скрубберов и реакторов. Слоем пептона толщиной 0,8—1,0 мм покрывают трубы из низколегированной стали такие трубы длиной 3,5 м и диаметром от 40 до 600 мм выпускает фирма Her ules Powder Со . [c.170]


    Большинство стальных конструкций, эксплуатируемых в атмосфере, покрыто ка-кими-либо защитными покрытиями. Если целостность такого покрытия постоянно поддерживается и ржавчина на стали не появляется, то, с точки зрения коррозии, нет никакого смысла использовать низколегированную сталь вместо обычной малоуглеродистой. Если же, наоборот, возможно повреждение защитного покрытия, то следует предусмотреть использование низколегированной стали. Более плотная пленка ржавчины, образующаяся на этих сталях, в меньшей степени вызывает отслаивание покрытия по соседству с прокорродировавшим участком, и скорость разрушения покрытия уменьшается. Некоторые исследователи сообщали о более высоком качестве и долговечности лакокрасочных покрытий на низколегированных сталях по сравнению с обычными сталями. Например, Копсон и Ларраби писали [24] Как полевые испытания, так и опыт эксплуатации показали, что лакокрасочные покрытия на высокопрочной низколегированной стали более надежны, чем на углеродистой или на медистой стали. Ржавчина, возникающая на повреждениях, в местах отсутствия покрытия или под лакокрасочной пленкой, у низколегированных сталей менее объемна. Благодаря меньшему объему ржавчины происходит меньшее растрескивание лакокрасочной пленки и, следовательно, на сталь попадает меньшее количество влаги, способствующей дальнейшей коррозии. В соответствии со сказанным, низколегированные стали можно с успехом использовать для таких целей, как сельскохозяйственное машиностроение. Покрытие на таких машинах нередко повреждается, и, кроме того, машины часто и подолгу остаются в поле под открытым небом. [c.21]

    Методы защиты металлов от газовой коррозии следующие жаростойкое легирование, нанесение покрытий и введение в газовую фазу компонентов, образующих на поверхности металла защитную пленку. Последний метод еще не нашел широкого применения. Жаростойкость железа мала, что исключает применение низколегированных углеродистых сталей в окислительных средах при Т > 500 С. Созданы высокожаростойкие стали, скорость окисления которых ниже, чем у Ре, в сотни и тысячи раз (окалиностойкие стали) 11]. [c.417]

    Применение жаростойких полисилоксанов в качестве покрытий позволяет использовать низколегированные стали при таких температурах, при которых они обычно работать не могут. Так, стальной образец, выдерживаемый 380 часов при температуре 465°, окисляется на 14 /о, аналогичный образец, покрытый защитной кремнийорганической пленкой, пигментированной алюминием, за 1 ООО часов воздействия высокой температуры окислился только на 2 /о, причем повреждения пленки не было обнаружено. Столь высокая жаростойкость кремнийорганических пленок даже по сравнению с обычными полисилоксанами объясняется тем, что при введении алюминиевой пудры образуются новые, весьма теплостойкие соединения — полиорганоалюмосилоксаны. [c.94]

    Неметаллические неорганические покрытия, наносимые на деталп из малоуглеродистых и низколегированных сталей. Стальные изделия оксидируют для защиты от коррозии при эксплуатации их в легких условиях. Защитные свойства оксидных пленок при атмосферной коррозии повышают дополнительной обработкой маслами. Пленки обладают малым сопротивлением на истирание. Цвет покрытия в зависимости от режима процесса меняется от блестяще-черного до темно-серого. [c.705]


Смотреть страницы где упоминается термин Защитные покрытия низколегированной: [c.262]    [c.271]    [c.818]    [c.163]    [c.107]    [c.167]   
Морская коррозия (1983) -- [ c.178 ]




ПОИСК





Смотрите так же термины и статьи:

Защитно-декоративные покрытия деталей из углеродистой и низколегированной сталей. Табл

Защитные покрытия деталей из углеродистой и низколегированной сталей. Табл

Низколегированные ст ли



© 2024 chem21.info Реклама на сайте