Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородное растрескивание

    Скоростью, с которой атомы Наде рекомбинируют друг с другом или с Н , образуя На, обусловлена каталитическими свойствами поверхности электрода. Если электрод является хорошим катализатором (например, платина или железо), водородное перенапряжение невелико, тогда как для слабых катализаторов (ртуть, свинец) характерны высокие значения перенапряжения. При добавлении в электролит какого-либо каталитического яда, например сероводорода или соединений мышьяка или фосфора, уменьшается скорость образования молекулярного Н и возрастает адсорбция атомов водорода на поверхности электрода . Повышенная концентрация водорода на поверхности металла облегчает проникновение атомов водорода в металлическую решетку, что вызывает водородное охрупчивание (потерю пластичности) и может привести к внезапному растрескиванию (водородное растрескивание) некоторых напряженных высокопрочных сплавов на основе железа (см. разд. 7..4). Каталитические яды увеличивают абсорбцию водорода, выделяющегося на поверхности металла в результате поляризации внешним током или коррозионной реакции. Это осложняет эксплуатацию трубопроводов из низколегированных сталей в некоторых рассолах в буровых скважинах, содержащих сероводород. Небольшая общая коррозия приводит к выделению водорода, который внедряется в напряженную сталь и вызывает водородное растрескивание. В отсутствие сероводорода общая коррозия не сопровождается водородным растрескиванием. Высокопрочные стали из-за своей ограниченной пластичности более подвержены водородному ра- [c.58]


    На практике катодную защиту можно применять для предупреждения коррозии таких металлических материалов, как сталь, медь, свинец и латунь, в любой почве и почти всех водных средах. Можно предотвратить также питтинговую коррозию пассивных металлов, например нержавеющей стали и алюминия. Катодную защиту эффективно применяют для борьбы с коррозионным растрескиванием под напряжением (например, латуней, мягких и нержавеющих сталей, магния, алюминия), с коррозионной усталостью большинства металлов (но не просто усталостью), межкристаллитной коррозией (например, дуралюмина, нержавеющей стали 18-8) или обесцинкованием латуней. С ее помощью можно предупредить КРН высоконагруженных стрей, но не водородное растрескивание. Коррозия выше ватерлинии (например, водяных баков) катодной защитой не предотвращается, так как пропускаемый ток протекает только через поверхность металла, контактирующую с электролитом. Защитной плотности нельзя также достигнуть на электрически экранированных поверхностях, например на внутренней поверхности трубок водяных конденсаторов (если в трубки не введены вспомогательные аноды), даже если сам корпус конденсатора достаточно защищен. [c.215]

    Сероводородсодержащий газ транспортировать по некоррозионно-стойким трубам даже в осушенном виде не рекомендуется. Связано это с тем, что даже небольшие отклонения в технологическом режиме, приводят к попаданию в трубопровод незначительного количества влаги, и вызывают в короткий срок сероводородное растрескивание материала труб. Наиболее подвержены этому явлению сварные швы, а точнее зоны сплавления сварных швов, где располагаются максимальные остаточные растягивающие сварочные напряжения и наиболее неблагоприятная структура металла. Соответственно, из двух типов труб бесшовных горячекатаных и сварных большей коррозионной стойкостью обладает первый тип. Бесшовные горячекатаные трубы по своей специфике изготовления обладают меньшей дефектностью по неметаллическим включениям, что оказывает очень благоприятное влияние на их стойкость к водородному растрескиванию. Требования к качеству материала труб в этом случае аналогичны требованиям к качеству материала шлейфовых труб. Наиболее распространен- [c.181]

    Эти кислоты можно получить в лаборатории, пропуская сероводород через воду, насыщенную ЗО . Для понимания механизма наблюдаемых разрушений следует учесть, что при протекании коррозионных процессов эти кислоты легко катодно восстанавливаются. В связи с этим политионовые кислоты действуют в качестве катодного деполяризатора, который способствует растворению металла по границам зерен, обедненным хромом. Еще одна форма влияния, возможно, заключается в том, что продукты их катодного восстановления (НгЗ или аналогичные соединения) стимулируют абсорбцию межузельного водорода сплавом, обедненным хромом. Под напряжением этот сплав, если он имеет ферритную структуру, подвергается водородной коррозии вдоль границ зерен. Аустенитный сплав в этих условиях устойчив. Показано, что наличие в морской воде более 2 мг/л серы в виде На З либо продуктов катодного восстановления сульфитов 50з" или тиосульфатов ЗзО вызывает водородное растрескивание высокопрочных сталей о 0,77 % С, а также ферритных и мартенситных нержавеющих сталей [67]. Предполагают, что и политионовые кислоты оказывают аналогичное действие. [c.323]


    Во всех этих случаях растрескивание вызывают атомы водорода, проникающие внутрь металла либо в результате коррозионной реакции, либо при катодной поляризации [52]. Сталь, содержащая водород в междоузлиях кристаллической решетки, не всегда разрушается. Она почти всегда теряет пластичность (водородное охрупчивание), но растрескивание обычно происходит только при одновременном воздействии высокого приложенного извне или остаточного растягивающего напряжения. Разрушения такого типа называют водородным растрескиванием под напряжением (или просто водородным растрескиванием). Трещины в основном транскристаллитные. В мартенситной структуре они могут проходить по бывшим границам зерен аустенита [52]. [c.149]

    МЕХАНИЗМ ВОДОРОДНОГО РАСТРЕСКИВАНИЯ [c.150]

    Серьезной технической проблемой продолжают оставаться аварии, связанные с водородным растрескиванием и расслаиванием металла. Этому вопросу в предлагаемой книге уделяется особое внимание. [c.14]

    Сталь становится менее склонной к водородному растрескиванию при температурах выше комнатной, так как при этом железо катализирует реакцию [c.149]

    Согласно другой гипотезе, водородное растрескивание происходит вследствие диффузии и адсорбции водорода на дефектах в вершине трещины, что снижает поверхностную энергию атомов напряженного металла [35] (адсорбционное растрескивание). [c.150]

    Интересной особенностью водородного растрескивания является специфическая задержка в появлении трещин после приложения нагрузки. Эта задержка в малой степени зависит от напряжения и уменьшается с повышением концентрации водорода в стали и с увеличением твердости или прочности при растяжении [56]. При малых концентрациях водорода разрушение может произойти через несколько дней после приложения нагрузки. [c.150]

    После обработки сплавы, бывшие до того стойкими, становятся чувствительными к водородному растрескиванию ферритные и мартенситные нержавеющие стали в результате холодной обработки также проявляют большую склонность к водородному растрескиванию. — Примеч, авт. [c.302]

    ПОД НАПРЯЖЕНИЕМ И ВОДОРОДНОЕ РАСТРЕСКИВАНИЕ [c.316]

    Другой механизм может быть обусловлен развитием водородного растрескивания вдоль границ зерен сенсибилизированного сплава. Разрушение в этом случае протекает в кислой среде, так как она поставляет водород, необходимый для коррозионного процесса. Кислая среда способствует также образованию молекулярной формы НаЗ (а не Н5 или 5 "), которая является основной каталитической примесью, стимулирующей абсорбцию сплавом атомарного водорода. Показано, что водные растворы ЗОг так же, как и растворы политионовых кислот, вызывают межкристаллитное растрескивание сенсибилизированной стали 18-8. Это объясняется быстрым восстановлением 50з на катодных участках с образованием НгЗ или других аналогично действующих продуктов восстановления. Ионы 50 не способны к такому восстановлению, поэтому серная кислота вызывает растрескивание в значительно меньшей степени. [c.323]

    Растрескивание в политионовых кислотах более всего выражено в области потенциалов 0,04—0,34 В [68]. Эти значения лежат выше потенциалов разряда ионов водорода и, как можно было ожидать, исключают водородное растрескивание. Однако в этом случае интересующие нас потенциалы следовало бы измерять не на поверхности сплава, а в трещинах, где их значения [c.323]

    Таким образом, отказы трубопроводов и оборудования ОНГКМ в большинстве случаев обусловлены отсутствием эффективного ингибирования в условиях воздействия сероводородсодержащих сред на металлоконструкции из коррозионно нестойких сплавов, содержащих дефекты. Твердые структурные составляющие, неметаллические включения (сульфиды, оксисульфиды и т. п.) и расслоения являются очагами возникновения водородного растрескивания металла. Поверхностные дефекты (риски, волосовины, раскатанные загрязнения) способствуют появлению и развитию сероводородного растрескивания. Очагами сероводородного растрескивания сварных соединений трубопроводов и деталей оборудования являются так- [c.66]

    Более существенное значение имеет катодная поляризация внутренней поверхности трубы, плотность тока которой, как следует из уравнения (338) и рис. 94, в узкой области, прилегающей к месту подключения катодной станции (или электродренажа), может достигать значительных величин и вследствие этого вызывать наводороживание металла с потерей им пластичности (охрупчивание). Опасность преждевременных разрушений тина водородного растрескивания усугубляется при наличии в транспортируемой среде растворенного сероводорода (что типично для сред нефтегазовой промышленности). Наличие в металле циклически изменяющихся напряжений, способно вызвать водородную усталость металла. [c.216]

    Продуктами коррозионного процесса являются гидратированные структуре металла) в молекулярное состояние сопровождается высокими давлениями (10 —10 МПа), в результате которых при определенных условиях происходит водородное растрескивание металла. [c.7]

    Наиболее распространенным из таких процессов переноса является диффузия в кристаллической решетке. Водород очень быстро диффундирует в большинстве металлов, особенно с о. ц. к. структурой решетки (стали и титановые р-сплавы), и поэтому вполне уместно сопоставить скорости растрескивания (например, в области II на рис. 2) со скоростями диффузии. Такое сравнение принято проводить на основе параметров активации (в частности, энергии активации) и в целом ряде работ было получено согласие данных для двух процессов в титановых сплавах [207], сталях [172, 308, 309] и некоторых других материалах [172]. Следует, правда, отметить, что обычно нет уверенности в протекании единственного термически активированного процесса и поэтому получение энергии активации растрескивания, близкой к энергии активации диффузии, не свидетельствует ни о наличии единственного диффузионного механизма переноса, ни даже об определяющей роли диффузии в процессе переноса водорода [39, 310]. Мы не сомневаемся, что некоторые явления водородного растрескивания контролируются диффузией, однако имеющиеся доказательства такого контроля не всегда достаточно убедительны. [c.129]


    Углеродистые стали особенно склонны к водородному растрескиванию после термической обработки, приводящей к образованию мартенсита менее склонны стали перлитной структуры. Показано, что углеродистая сталь, прошедшая термообработку с образованием сфероидальных карбидов, менее склонна к растрес- [c.149]

    При потенциалах ниже —1,1 В соответствует именно водородаому растрескиванию [58]. К тому же при повышенной температуре стали разрушаются от КРН в воде быстрее, чем при комнатной при водородном растрескивании (катодная поляризация), напротив, время до разрушения снижается по мере повышения температуры. Механическая обработка высокопрочных сталей повышает устойчивость к КРН (критический потенциал становится положительнее потенциала коррозии), тогда как устойчивость к водородному растрескиванию падает. Следовательно, на практике важно иметь в виду, что тросы мостов, изготовленные из высокопрочной стали, должны пройти холодную обработку, чтобы уменьшить опасность растрескивания во влажном воздухе. Без такой обработки тросы разрушаются преждевременно несмотря на достаточный запас прочности, как это имело место в США и других странах. Более того, обезуглероженная с поверхности высокопрочная сталь (т. е. с более мягкой поверхностью) не разрушается в кипящей воде или в 3 % растворе Na l, но быстро растрескивается при катодной поляризации. Назначительное количество водорода, образованного в результате реакции железа с водой, не оказывает влияния на твердые подповерхностные слои стали. Адсорбированная вода в большей степени, чем растворенный в решетке водород, является причиной растрескивания высокопрочных сталей и, возможно, высокопрочных мартенситных и дисперсионнотвердеющих нержавеющих сталей, алюминиевых, магниевых и титановых сплавов, а также - и -латуней — все они склонны к разрушению в присутствии влаги. [c.152]

    Центры водородного растрескивания в сталях образуются на границе фаз (например, Feg или интерметаллических соединений, какие встречаются в мартенситностареющих сталях), выделивших- [c.152]

    Кадмиевые покрытия получают почти исключительно электро-осаждением. Разница в потенциалах между кадмием и железом не столь велика, как между цинком и железом, следовательно степень катодной защиты стали покровным слоем кадмия с ростом размера дeфeкtoв в покрытии падает быстрее. Меньшая разность потенциалов обеспечивает важное преимущество кадмиевых покрытий применительно к защите высокопрочных сталей (твердость Яр > 40, см. разд. 7.4.1). Если поддерживать потенциал ниже значения критического потенциала коррозионного растрескивания под напряжением (КРН), но не опускаясь в область еще более отрицательных значений, отвечающую водородному растрескиванию, то кадмиевые покрытия надежнее защищают сталь от растрескивания во влажной атмосфере, чем цинковые. Кадмий дороже цинка, но он дольше сохраняет сильный металлический блеск, обеспечивает лучший электрический контакт,, легче поддается пайке и поэтому нашел использование в электронной промышленности. Кроме того, он устойчивее к воздействию водяного конденсата и солевых брызг. Однако, с другой стороны, кадмиевые покрытия не столь устойчивы в атмосферных условиях, как цинковые покрытия такой же толщины. [c.238]

    Мартенситные стали, если их подвергнуть термической обработке для повышения твердости, приобретают сильную склонность к растрескиванию в слабо- и умереннокислых растворах. Особенно это проявляется в присутствии сульфидов, соединений мышьяка или продуктов окисления фосфора или селена. Специфические свойства кислот не имеют существенного значения до тех пор, пока процесс идет с выделением водорода. Эта ситуация отличается от случая аустенитных сталей, которые разрушаются исключительно в результате специфического действия анионов. Катодная поляризация также не защищает мартенситные стали от растрескивания, а ускоряет его. Все эти факты свидетельствуют, что мартенситные стали в указанных условиях разрушаются не по механизму КРН, а в результате водородного растрескивания (см. разд. 7.4). При катодной поляризации в морской воде, особенно при высоких плотностях тока, более пластичные ферритные стали подвергаются водородному вспучиванию, а не растрескиванию. Аустенитные нержавеющие стали устойчивы и к водородному вспучиванию, и к водородному растрескиванию. [c.319]

    Мартенситные нержавеющие и дисперсионно-твердеющие стали, термообработанные с целью получения предела текучести- олее 1,24 МПа, самопроизвольно растрескиваются в атмосфере, солевом тумане или при погружении в водные среды, даже если они не находятся в контакте с другими металлами [55—58]. Лопасти воздушного компрессора из мартенситной нержавеющей стали [59 ] разрушались вдоль передней кромки, где были велики остаточные напряжения и конденсировалась влага. Для сверхпрочных мартенситных нержавеющих сталей с 12 % Сг, которые находились в морской атмосфере под напряжением, составляющим 75 % от предела текучести, срок службы не превышал 10 дней [60]. Приведенные данные получили разнообразные объяснения, однако они убедительно доказывают, что сталь в указанных случаях разрушается в результате или водородного растрескивания, или КРН. При наличии в стали высоких напряжений, она может растрескиваться в воде без внедрения водорода, который образуется при взаимодействии воды с металлом. По-видимому, в этом случае вода непосредственно адсорбируется на поверхности и уменьшает прочность металлических связей в степени, достаточной для зарождения трещин (адсорбционное растрескивание под напряжением). [c.320]

    Область граничных температур лежит примерно в интервале 60—80°С. Это не противоречит полученным ранее данным Ацелло и Грина [64а], что нержавеющая сталь 18-8 подвергается КРН при комнатной температуре в сильнокислом растворе, содержащем 5М H2SO4 + 0,5М Na l. С большой долей уверенности можно утверждать, что разрушение в последнем случае происходит по другому механизму. По нашему мнению, в сильных кислотах водородное растрескивание напряженных сталей 18-8 может протекать вдоль плоскостей скольжения, где имеет место превращение -у-фазы в а-фазу. Именно а-фаза стали 18-8 (с объемно-центрированной кубической решеткой) подвержена водородному растрескиванию. Нержавеющая сталь с 25 % Сг и 20 % Ni (марки 310) не претерпевает заметных фазовых превращений при холодной обработке и относительно стойка к водородному растрескиванию, но не стойка к КРН в кипящем растворе Mg lj. См. [64Ь]. —Примеч. сшт. [c.322]

    В кипящем 50 % растворе NaOH напряженные сплавы кобальта разрушаются под действием КРН, а в некоторых случаях — в результате довольно быстрого равномерного растворения. Если напряженные сплавы, подвергнутые глубокой холодной обработке, катодно поляризовать при комнатной температуре в 5 % растворе H2SO4 с добавкой AS2O3, то они разрушаются в результате водородного растрескивания. Сходным образом ведут себя сплавы, контактирующие в указанном растворе с более активным [c.370]

    В растворе, насыщенном H S и содержащем 5 % Na l и 0,1 % уксусной кислоты (имитация кислой среды газовых скважин), разрушение сплава зависит от температуры и скорости равномерной коррозии, которая преобладает в этих условиях и приводит к образованию водорода. При комнатной температуре разрушение вследствие водородного растрескивания (называемого иногда также сульфидным растрескиванием) протекает обычно только в том случае, если обработанные холодным способом сплавы были подвергнуты последующей термической обработке (состарены на заводе-изготовителе). Старение сплавов, увеличивающее их прочность, может приводить также к усилению равномерной коррозии в кислотах. При этом количество выделяющегося водорода становится достаточным, чтобы вызвать растрескивание. При повышенной температуре разрушения этого типа обычно уменьшаются (меньше водорода проникает в металл и больше удаляется в виде газа). Однако в области повышенных температур водородное растрескивание может смениться КРН, которое связано с присутствием хлоридов. В этом случае контакт сплавов с более активными металлами предотвращает растрескивание (протекторная защита). [c.371]

    После 10-12-летней эксплуатации аппаратов УКПГ во многих из них стали появляться водородные расслоения, причем, по данным ПО Оренбурггаздобыча , из 122-х обследованных в 1989 г. аппаратов в 67-ми обнаружено водородное растрескивание металла. Последнее обусловлено неэффективным ингибированием наводороживающей рабочей среды и содержанием в металле аппаратов сульфидных включений [25]. Проведенный ВНИИнефтемашем ультразвуковой контроль позволил провести градацию аппаратов по группам пораженности и ввести критерии отбраковки. Особое внимание было уделено защите пораженных областей с помощью новой технологии ингибирования. Разработана система нанесения ингибирующей композиции [c.32]

    Водородное растрескивание тройника трубопровода 0720 х 18 мм, сооруженного из труб фирмы УаПигес, произошло после шести лет эксплуатации. Механические испытания металла из очага разрушения показали, что его прочностные свойства соответствуют техническим условиям. В то же время вследствие нано-дороживания относительное сужение уменьшилось более чем на 30%. Металлографические исследования позволили установить, что водородные блистеры зарождались на границах матрица-неметаллические включения и располагались по всему сечению стенки тройника. При этом их максимальная концентрация наблюдалась в середине стенки. Данное явление можно объяснить повышенной концентрацией неметаллических включений в центральной зоне листа вследствие специфики изготовления проката. В дальнейшем, по мере накопления водорода, блистеры сливались между собой или с поперечными трещинами, пронизывая все сечение металла. Значительное давление водорода в расслоении привело к возникновению разрушающих напряжений в наружных слоях металла стенки и к развитию поперечных трещин с последующей разгерметизацией участка трубопровода (рис. 12г). Водородное растрескивание металла с образованием сквозного дефекта в нижней части тройника явилось следствием его эксплуатации в условиях застойной зоны при отсутствии Э(()фективного ингибирования. [c.39]

    Примером сероводородного растрескивания деталей газопромыслового оборудования является хрупкое разрушение пластин компенсатора насоса 9МГР на промстоках. Микроструктура металла пластин ферритная с небольшим количеством перлита, твердость составляет 140 НВ, коррозионные трещины развивались по границам зерен. Произошедшее после семи месяцев эксплуатации водородное растрескивание скалки насоса ХТР-1,6/200, который перекачивает ингибитор КИГИК, приготовленный на основе метанола, обусловлено наличием большого количества мартенситной составляющей в приповерхностном слое металла скалки, твердость которого достигает 53 HR . [c.43]

    Существенным фактором, влияющим на склонность стали к водородному растрескиванию, является форма сульфидных включений. Испытания трубной стали 16Г2САФ с практически одинаковым содержанием серы показали, что вредное влияние водорода на сталь с эллипсообразными сульфидами на 10—40% ниже, чем на сталь с пластинчатыми сульфидами [8]. Для получения сульфидов различной формы выплавляли стали по обычной технологии н с обработкой синтетическим шлаком. Влияние формы сульфидов объясняется тем, что пластинчатые сульфиды имеют большую поверхность разде- -ла со стальной матрицей, чем эллипсообразные включения. [c.24]

    Увеличением содержания какого-либо упрочняющего легирующего компонента можно повысить не только стойкость стали к сероводородному и водородному растрескиванию, но и категорию прочности. Так, сталь марки 12Г2Ф имеет следующий химический состав [c.181]

    Другим объяснением исследуемого разрушения является концепция водородного охрупчивания металла, предполагающая, что растрескивание возникает в результате наводороживания стали. При этом источником водорода может быть сероводород, содержащийся в транспортируемом продукте или продуцируемый суль-фатвосстаиавливающими бактериями в грунте [62, 224] углекислый газ, содержащийся в транспортируемом продукте токи катодной защиты при потенциалах выше регламентированных значений. Однако при КР, как отмечалось выше (см. раздел 1), отсутствуют характерные внешние проявления водородного растрескивания, такие как блистеринг и расслоение металла. Нанодороживание металла вследствие образования сероводорода при растворении неметаллических включений сульфида марганца в [c.89]

    В общем случае большинство механических свойств стали можно улучшить, удаляя остаточные примеси или регулирз я их содержание. Это, по-видимому, справедливо и в отношении охрупчивания при воздействии окружающей среды. Например, вакуумный переплав повышал стойкость мартенситной стали 410 к водородному растрескиванию [7] и увеличивал долговечность 30%-ной хромистой стали при коррозионной усталости в условиях статического нагружения. Особенно вредными примесями являются сера и фосфор [9, 10], что может иметь отношение к тесной связи между водородным охрупчиванием и хрупкостью, вызванной отпуском [11, 12]. [c.53]


Смотреть страницы где упоминается термин Водородное растрескивание: [c.148]    [c.150]    [c.153]    [c.320]    [c.325]    [c.424]    [c.49]    [c.12]    [c.37]    [c.38]    [c.9]    [c.47]   
Смотреть главы в:

Коррозия и борьба с ней -> Водородное растрескивание

Основы учения о коррозии и защите металлов -> Водородное растрескивание

Коррозия металлов -> Водородное растрескивание

Коррозионное растрескивание и защита высокопрочных сталей -> Водородное растрескивание


Основы учения о коррозии и защите металлов (1978) -- [ c.191 ]




ПОИСК







© 2024 chem21.info Реклама на сайте