Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сероводородное растрескивание

    На сероводородное растрескивание оказывают влияние такие параметры среды, как наличие водной фазы, ее pH, содержание сероводорода, присутствие хлоридов. Сероводородное растрескивание стали при низких температурах происходит только под действием водных растворов сероводорода. Ни сухой сероводород, ни насыщенные сероводородом нефтепродукты (бензин, керосин, дизельное топливо) не вызывают растрескивания сталей. В сероводородных средах при температуре выше точки кипения водной фазы также не наблюдалось случаев растрескивания металла. [c.148]


Рис. 2. Влияние температуры на сероводородное растрескивание и скорость общей коррозии сталей Рис. 2. <a href="/info/15368">Влияние температуры</a> на сероводородное растрескивание и <a href="/info/402609">скорость общей коррозии</a> сталей
Рис. 4. Сероводородное растрескивание насосно-компрессорных труб в местах их захвата цепным ключом (а), в средней части труб (б) Рис. 4. Сероводородное растрескивание <a href="/info/1508176">насосно-компрессорных труб</a> в местах их захвата цепным ключом (а), в <a href="/info/916048">средней части</a> труб (б)
    Склонность стали к сероводородному растрескиванию зависит от прочностных свойств ее, которые меняются в широком диапазоне при термической обработке, пластической деформации или их сочетании. Термическую обработку большинство исследователей рекомендует проводить таким образом, чтобы структура стали была мелкозернистой и содержала в основном сорбит, а карбиды присутствовали в минимальном количестве, были мелкими глобулярными, равномерно распределенными. [c.28]

    Помимо общей и язвенной коррозии сварных конструкций сероводород вызывает сероводородное растрескивание и водородное расслоение металла оборудования и трубопроводов. [c.7]

Рис. 1. Сопротивляемость сталей сероводородному растрескиванию (СР) п зависимости от содержания в среде НгЗ и общего давления р Рис. 1. Сопротивляемость <a href="/info/333723">сталей сероводородному растрескиванию</a> (СР) п зависимости от содержания в среде НгЗ и общего давления р
Рис. 6. Сероводородное растрескивание затрубной задвижки (а), буферного фланца (б) и корпуса задвижки (в) Рис. 6. Сероводородное растрескивание затрубной задвижки (а), буферного фланца (б) и корпуса задвижки (в)

    Трещины сероводородного растрескивания в насосно-комп-рессорных трубах скважины № 234 возникали на расстоянии 400-600 мм от соединительных муфт и начинали свое развитие с острых вмятин, образовавшихся при захвате труб цепным ключом. [c.21]

    Согласно стандарту NA E MR 0175-97, природный газ, содержащий сероводород при парциальном давлении более 0,35 кПа, считается сернистым, то есть вызывающим сероводородное растрескивание [7]. [c.11]

    Сероводородное растрескивание металла муфт насоснокомпрессорных труб отечественной и импортной поставок происходит также при отсутствии эффективного ингибирования под действием коррозионной среды и высоких растягивающих напряжений, возникающих преимущественно в зоне концентраторов напряжений при затяжке муфт. [c.21]

    Сквозная язвенная коррозия и сероводородное растрескивание корпуса задвижки скважины № 10011, изготовленного из ферритно-перлитной стали с содержанием углерода до 0,25% (твердость 170 НВ), произошли после четырех лет эксплуатации в местах расположения в корпусе металлургических раковин и пор (диаметр последних достигал 9 мм (рис. 6в)). [c.27]

    Рис, 8, Сероводородное растрескивание сварных соединений шлейфовых трубопроводов [c.30]

    Наличие остаточных технологических напряжений, возникающих при гибке, металлургических дефектов, а также воздействие сероводородсодержащей среды привели в условиях вибрации отвода к усталостному сероводородному растрескиванию металла (на поверхности излома обнаружены усталостные бороздки). [c.35]

    Случаи сероводородного растрескивания корпуса крана (рис. 12е) обусловлены металлургическими дефектами в очаге разрущения и в прилегающих зонах наблюдается большое количество неметаллических включений, пор, трещиноподобных дефектов. Кроме того, пластические свойства образцов из металла корпуса более чем в 2 раза ниже требуемых. [c.41]

    Водородное разрушение стальных ялементов оборудования бывает двух видов сквозное (сероводородное) растрескивание и расслоение металла. Первый вид разрушения особенно опасен. Растрескиванию подвержены только стали с относительно высокими пределалш прочности илп с большими внутренними напряжениями, тогда как мягкие ненапряженные стали в подобных условиях расслаиваются. Однако в ряде случаев и при расслоении может происходить частичное растрескивание металла с образованием несквозных трещин, простирающихся от поверхности до внутреннего пространства пузырей. Как правило, водородное расслоение наблюдается у аппаратов со сроком службы 5— 7 лет. [c.148]

    Результаты испытаний приведены в табл. 1.3, из которой видно, что стойкость стали с содержанием 0,29 /о сурьмы более чем в 2 раза превышает таковую исходной стали. Определение содержания поглощенного сталью водорода показало, что с увеличением содержания сурьмы происходит непрерывное понижение содержания в стали диффузионно-подвижного водорода от 5,5 см 100 г в исходной стали до 0,9 см /ШО г в стали с 0,50% сурьмы. Аналогично изменяется суммарное содержание водорода (от 4,8 см /100 г до 1,0 см7100 г соответственно). Таким образом, увеличение содержания сурьмы охрупчивает сталь, что требует ограничения содержания сурьмы, но и уменьшает содержание водорода в стали. Поэтому оптимальным содержанием сурьмы в низколегированных стойких к сероводородному растрескиванию сталях является 0,25—0,30%. [c.27]

    На ОНГКМ отмечались также многочисленные случаи сероводородного растрескивания насосно-компрессорных труб (0114 мм, сталь марки 18Х1Г1МФ отечественной поставки) скважин (рис. 4). Разрушению подвергались как резьбовые соединения, так и сами трубы. В большинстве случаев время эксплуатации насосно-компрессорных труб до разрушения составляло менее 1,5 лет. [c.19]

    Исследованиями ЮЖНИИГИПРОГАЗа установлено, что в условиях минимального коррозионного воздействия эксплуатируются межблочные коммуникации емкость Е-01-выходной коллектор УКПГ при эффективной низкотемпературной сепарации. Все остальные линии эксплуатируются в присутствии электролита. Согласно рис. 3, все межблочные коммуникации, линии обвязки и шлейфы скважин-доноров подвержены сероводородному коррозионному растрескиванию. Прогнозируемая скорость общей коррозии составляет 0,1-0,3 мм/год. В диапазоне рабочих температур скорость общей коррозии металла относительно невысока, а его стойкость к сероводородному растрескиванию также является низкой (рис. 3). [c.13]

    С повышегшем внутренних механических напряжений возникает восприимчивость металла к сероводородному растрескиванию. [c.14]

    Для установления причин аварий проверялось соответствие техническим условиям химического состава, механических свойств и размеров резьбовых соединений насосно-компрес-сорных труб. Были исследованы структура стали 18Х1Г1МФ и ее склонность к сероводородному растрескиванию в сравнении с металлом труб из импортной стали С-75 по API 5LX. Установлено, что отечественная сталь 18Х1Г1МФ обладает более высокими прочностными характеристиками 840- [c.19]

    Было также показано, что геометрические параметры резьбовых соединений насосно-компрессорных труб скважин № 565 и № 566 из стали 18X1Г1МФ не соответствовали требованиям технических условий. Наличие дефектов резьбы приводило к возрастанию растягивающих напряжений в резьбовых соединениях в 1,5-2 раза. В результате разрушение некоторых иасосно-компрессорных труб происходило через несколько суток эксплуатации по причине сероводородного растрескивания металла, вызванного совместным воздействием сероводородсодержащих сред и повышенных напряжений в резьбовых соединениях. [c.20]


    Фонтанная арматура выходит из строя, главным образом, вследствие сероводородного растрескивания ее деталей. На ОНГКМ применяется запорная арматура шести фирм, которые используют при ее изготовлении свыше 50 различных марок материалов. Опыт эксплуатации показывает, что у запорной арматуры фирмы FM ненадежен спецфланец, у арматуры фирмы ameron — шток задвижки. [c.21]

    Установлено, что основной причиной разрушения адаптеров являлось воздействие сероводородсодержащего газа на металл, имеющий дефектную структуру (грубодендритная структура с усадочными порами и несплошностями), которая способствовала замедленному сероводородному растрескиванию металла адаптеров. [c.24]

    Разрушение участка трубопровода (0168x12 мм) газа раз-газирования на Карачаганакском нефтегазоконденсатиом месторождении произошло в зоне приварки штуцера (060x14 мм). В момент, предшествовавший разрушению, трубопровод находился под давлением 3,5 МПа в отсутствие движения среды. Температура стенки трубы составляла минус 25-минус 27°С. Зарождение и докритический рост трещин происходили из-за наличия непровара на границе сплавления кольцевого шва штуцера и основного металла трубы. После достижения трещиной критической длины (40-42 мм) началось лавинообразное разрушение в обе стороны от штуцера, о чем свидетельствует наличие шевронного излома. Остановка трещин произошла на основном металле трубы в результате их многократного разветвления. Трещины в шве образовались из-за нарушения технологии подготовки изделий под сварку и возникновения остаточных сварочных напряжений. В соответствии с требованиями нормативной документации штуцер должен изготавливаться без отверстия и привариваться к трубе угловым швом с разделкой кромки. Сверление штуцера и трубы должно выполняться после его приварки с одновременным сверлением отверстия в трубе и удалением возможных непроваров в корне шва. Сварное соединение данного штуцера было выполнено с нарушением технологии изготовления и имело непровары и трещины глубиной до 3 мм. Наличие этих характерных дефектов сварных швов свидетельствовало о том, что контроль качества металла неразрушающими методами не проводился. Предусмотренная технологией местная термическая обработка сварного соединения патрубок-труба , проводимая путем нагрева металла пламенем газовой горелки, не привела к существенному снижению напряжений в сварном шве. Разрущение трубопровода газа разгазирования произошло по механизму сероводородного растрескивания в результате развития недопустимых дефектов (трещины, непровары, высокие остаточные напряжения) в сварном соединении штуцер-труба . [c.31]

    Исследования микроструктуры стали выявили скопление хрупких составляющих (а-фазы и 8-эвтектоида) по границам зерен (как и в случае металла спецфланца), образовавшихся вследствие нарушения технологии термообработки задвижек, а также превышения процентного содержания ферритной составляющей структуры. Исследование металла новых задвижек показало аналогичную структуру, в связи с чем вся партия задвижек была отбракована и заменена на новую. Сероводородное растрескивание 6" задвижки фирмы КаЬазЬ Kikai обусловлено охрупченным состоянием материала корпуса задвижки и несоответствием его механических свойств данным сертификата. [c.25]

    Буферный 4" фланец из стали Uranus 50 фонтанной арматуры разрушился через семь лет эксплуатации (рис. 66). Зарождение и распространение трещин сероводородного растрескивания происходило по границам зерен аустенита в местах скопления карбидов железа. Обеднение границ зерен карбидами хрома было вызвано, вероятно, нарушением режима термической обработки фланца, твердость металла которого достигала 25 HR . [c.27]

    В 1974 г. произошло разрушение трубопровода 0114 мм обвязки одной из скважин УКПГ-б ОНГКМ. В области фланца образовалась сквозная трещина, находившаяся на расстоянии 15-23 мм от оси сварного шва. Структура металла фланца в зоне образования и развития трещины состояла из грубопластинчатого перлита. Методами электронной фрактографии установлено, что металл фланца был сильно загрязнен неметаллическими включениями, по которым распространялось разрушение, имевшее преимущественно хрупкий характер. Причиной возникновения этого повреждения явилось наличие в металле фланца большого количества неметаллических включений типа оксисульфидов и непроваров глубиной до 2 мм общей протяженностью около 50 мм в корне сварного шва. Кроме того, отсутствие термообработки сварного соединения способствовало возникновению в околошовной зоне структуры троостита, не обладающей достаточной стойкостью к сероводородному растрескиванию, и высокого уровня остаточных напряжений. [c.27]

    Сероводородное растрескивание монтажного сварного стыка газопровода 0720x17,2 мм УКПГ-16-ОГПЗ произошло ранее чем через месяц после начала его эксплуатации. Трубопровод сооружен из труб импортной поставки (сталь Х46) в соответствии с ТУ-28-40/82 Н25. Очаг разрушения длиной 280 мм находился на металле шва в нижней части трубы. По обе стороны от очага на металле шва наблюдался шевронный узор с выходом в зону термического влияния в верхней ча- [c.36]

    После 18 лет эксплуатации произошло разрушение (длина трещины 280 мм) кольцевого сварного соединения шлейфового трубопровода 0219x12 мм (сталь 12Х1МФ) скважины № 6026 (рис. 8а). В сварном соединении в области очага разрушения обнаружены поры, шлаковые включения, подрезы и непровар до 5 мм (рис. 86), которые инициировали сероводородное растрескивание металла стыка. Аналогичное разрушение сварного стыка шлейфового трубопровода скважины № 183 произошло после 15 лет эксплуатации (рис. 8в). Трещина в сварном шве длиной 210 мм образовалась от непровара глубиной 4 мм. Склонность металла шва к сероводородному растрескиванию обусловлена также его повышенной твердостью (293 НВ), что свидетельствует об отсутствии термообработки стыка. [c.29]

Рис. 10. Трещины сероводородного растрескивания в металле отвода ДКС-1 (х200) Рис. 10. Трещины сероводородного растрескивания в металле отвода ДКС-1 (х200)
    Сероводородное растрескивание отвода 90x114 мм дожимной компрессорной станции (ДКС-1) произошло после 10 лет эксплуатации. Материалом отвода являлась ферритно-перлитная сталь A420WPLG (твердость 120 НВ). Сквозная трещина длиной 90 мм располагалась в нижней части отвода, на участке сгиба, и развивалась по скоплениям неметаллических включений (рис. 10). [c.35]

    Растрескивание сварного соединения корпуса шарового клапана ЛК8/ШКМ с хвостовиком произошло по истечении года эксплуатации в условиях ОНГКМ. Корпус и хвостовик изготовлены из стали А352СгЬСС-М (% С <0,18 51 < 0,6 Мп < 1,2 Сг < 0,2 Си < 0,15 Р < 0,025 5 < 0,025 Сз < 0,38 НВ < 235). При ви.зуальном осмотре в верхней части кольцевого шва обнаружена трещина длиной 300 мм, а методами ультразвуковой дефектоскопии зафиксировано ее развитие в металле шва на расстояние 1200 мм. Характер разрушения хрупкий, поверхность излома покрыта продуктами коррозии, растрескивание начинается от непровара (рис. 13). В зоне термического влияния под корневым слоем в области очага разрушения обнаружен участок укрупненного бейнитного зерна с твердостью 266-285 НУ. В следующих далее слоях сварного соединения в зоне термического влияния наблюдается мелкозернистая нормализованная структура с твердостью 210-221 НУ. Сероводородное растрескивание сварного соединения инициировал концентратор напряжений — непровар в сочетании с бейнитной структурой металла, обладающей высокой твердостью. [c.42]

    Разрушение отводов и горизонтальных участков СППК обусловлено язвенной коррозией, зарождающейся в местах выхода на поверхность неметаллических включений и вызывающей утонение стенок в 2-5 раз. От этих концентраторов напряжений по основному металлу и сварному шву развивается сероводородное растрескивание. Появлению язвенной коррозии и свищей в сварных швах Г уголка и регулятора уровня способствовали имеющиеся в металле непровары, поры и шлаковые включения. [c.43]

    Примером сероводородного растрескивания деталей газопромыслового оборудования является хрупкое разрушение пластин компенсатора насоса 9МГР на промстоках. Микроструктура металла пластин ферритная с небольшим количеством перлита, твердость составляет 140 НВ, коррозионные трещины развивались по границам зерен. Произошедшее после семи месяцев эксплуатации водородное растрескивание скалки насоса ХТР-1,6/200, который перекачивает ингибитор КИГИК, приготовленный на основе метанола, обусловлено наличием большого количества мартенситной составляющей в приповерхностном слое металла скалки, твердость которого достигает 53 HR . [c.43]


Библиография для Сероводородное растрескивание: [c.225]   
Смотреть страницы где упоминается термин Сероводородное растрескивание: [c.30]    [c.45]    [c.55]    [c.287]    [c.287]    [c.22]    [c.13]    [c.20]    [c.22]    [c.23]    [c.25]    [c.36]    [c.36]    [c.41]    [c.42]   
Структура коррозия металлов и сплавов (1989) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Сероводородная



© 2024 chem21.info Реклама на сайте