Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Покрытия лакокрасочные защитные свойства

Рис. 356. Схема установки для определения защитных свойств лакокрасочных покрытий 1 — образцы 2 — стаканы с исследуемым раствором 3 — электролитические ключи с тем же раствором 4 — электролитический ключ с насыщенным раствором КС1 5 — насыщенный каломельны электрод сравнения 6 — промежуточный сосуд с тем же раствором 7 — четырехкнопочный переключатель 8 — микроамперметр 9 — двухполюсный переключатель /О — потенциометр Рис. 356. <a href="/info/13990">Схема установки</a> для определения защитных свойств лакокрасочных покрытий 1 — образцы 2 — стаканы с исследуемым раствором 3 — <a href="/info/19439">электролитические ключи</a> с тем же раствором 4 — <a href="/info/19439">электролитический ключ</a> с <a href="/info/2672">насыщенным раствором</a> КС1 5 — <a href="/info/134127">насыщенный каломельны электрод</a> сравнения 6 — <a href="/info/677697">промежуточный сосуд</a> с тем же раствором 7 — четырехкнопочный переключатель 8 — <a href="/info/836412">микроамперметр</a> 9 — <a href="/info/787038">двухполюсный</a> переключатель /О — потенциометр

    Для защиты металлов от атмосферной коррозии широко применяют нанесение различных защитных неметаллических (смазки, лакокрасочные покрытия) и металлических (цинковых, никелевых, многослойных) покрытий или превращение поверхностного слоя металла в химическое соединение (окисел, фосфат), обладающее защитными свойствами. [c.383]

    Традиционные лакокрасочные материалы защищают лишь за счет барьерного и адгезионного факторов, которые не в состоянии обеспечить надежную и длительную защиту, так как полимерные пленки не могут быть абсолютно непроницаемыми для молекул воды и небольших агрессивных ионов, например ионов хлора п фтора. Уже довольно давно было предложено повышать защитные свойства лакокрасочных покрытий путем введения в них так называемых пассивирующих пигментов — таких твердых минеральных порошкообразных веществ, части цы которых при контакте с поверхностью металла облагораживают его потенциал и тем самым делают металл более устойчивым к коррозии. Однако у пассивирующих пигментов есть ряд недостатков. Важнейшие из них следующие. [c.64]

    Повышение защитных свойств и долговечности лакокрасочного покрытия автомобиля, гаражей и т.п. за счет предварительного фосфатирования поверхности окрашиваемого металла [c.51]

    Особенность покрытий на основе лака ХП-784 и эмали ХП-799 — высокая трещиностойкость с шириной раскрытия трещин в бетоне до 0,3 мм (допустимое раскрытие трещин в бетонной поверхности при защите эпоксидными и перхлорвиниловыми лакокрасочными материалами 0,05 мм). Трещиностойкость покрытия на основе эмали ХП-799 сохраняется до 80 °С. При оптимальной толщине покрытия его защитные свойства при наличии трещин допустимых величин сохраняются. Эмаль ХП-799 выпускается в широкой цветовой гамме и наносится по грунтовкам Э11-0010, ГФ-021, ГФ-0119, ФЛ-ОЗК. [c.232]

    Электроосмос представляет собой перенос жидкости, увлекаемой ионами, движущимися под влиянием возникающей в системе электродвижущей силы. Способность той или иной лакокрасочной системы к электроосмотическому переносу в значительной степени определяет ее защитные свойства чем меньше будет перенос, тем лучше покрытие. На защитные свойства будет оказывать влияние не только количество жидкости, переносимой вследствие электроосмоса, но и направление переноса. Для изучения электроосмотического переноса был использован прибор, схема которого представлена на рис. 4. Пленка исследуемого покрытия 5 помещалась между двумя сосудами с 0,01 N раствором КС1 и перед измерениями выдерживалась 1 3 дня. Вспомогательные электроды / помещались в сосуды 3 и соединялись с основным прибором электролитическими мостиками 4. Концы мостиков для затруднения диф )узии опускались в специальные отростки в нижней части прибора. Если между электродами 1 создать разность потенциалов (она всегда существует в реальных системах), то наблюдается перенос воды через пленку, который измеряется с помощью градуированных капилляров 2. Объемы воды, переносимой 1 кул пропущенного электричества, приведены в таблице. Во всех случаях перенос воды наблюдался в направлении к отрицательному полюсу, поскольку изученные нами пленки имели отрицательный заряд. Наименьший перенос характерен для пленок ПХВ с пластификатором и СВХ-40, наибольший — для глифталевых. [c.114]


    Химическая стойкость — способность лакокрасочного покрытия сохранять защитные свойства в условиях воздействия различных химических реагентов кислот, щелочей, солей и органических соединений. [c.230]

    Погуляй В. Е., Михайловский Ю. Н. Сравнительная оценка защитных свойств битумных и битумно-эпоксидных покрытий. — Лакокрасочные материалы и их применение , 1966, № 2. [c.116]

    Усилиями ряда исследователей получены смазки, слой которых ни по внешнему виду, ни по защитным свойствам не отличается от слоя лакокрасочных покрытий. Стоимость же углеводородных смазок несравненно ниже, чем лакокрасочных материалов. [c.44]

    Кроме рассмотренной комплексной оценки декоративных и защитных свойств лакокрасочных покрытий, испытывающихся в различных условиях, принятой в настоящее время, существуют и другие способы оценки. [c.99]

    Вообще необходимо отметить, что проблема защиты от коррозионного воздействия питьевой воды весьма сложна, поскольку лакокрасочное покрытие в таких случаях должно проявить не только защитные свойства, но и быть совершенно инертным по отношению к воде. [c.73]

    Исследователями из Ростова-на-Дону установлено, что если для приготовления этого лака вместо масла взять инден-кумароновую смолу (коксохимический продукт) и отход масло-жирового производства, то образующийся лакокрасочный материал приобретает заметные преимущества он высыхает за,5 часов (вместо 24 часов для лака БТ-577), а покрытия из него проявляют более высокие защитные свойства и долговечность. [c.80]

    Таким образом, устойчивость лакокрасочных покрытий и их защитные свойства определяются в основном двумя факторами — солнечной радиацией и относительной влажностью. [c.95]

Таблица 5.2. Шкала оценки защитных свойств лакокрасочного покрытия в зависимости от доли разрушенной поверхности (%) Таблица 5.2. Шкала <a href="/info/1748208">оценки защитных свойств лакокрасочного</a> покрытия в зависимости от доли разрушенной поверхности (%)
    Морская атмосфера содержит частицы хлорида натрия, влияющих в основном на течение анодного процесса. Известно, что многие лакокрасочные покрытия, обладающие высокими защитными свойствами в морской воде, оказываются нестойкими в речной воде. Исходя из этого, изделия, предназначенные для эксплуатации в морской (или речной) воде, нельзя испытывать в одном и том же электролите. [c.17]

    ДЛЯ ОПРЕДЕЛЕНИЯ ЗАЩИТНЫХ СВОЙСТВ ЛАКОКРАСОЧНЫХ ПОКРЫТИЙ [c.92]

    Классификацию методов ускоренных испытаний защитных свойств лакокрасочных покрытий условно примем такой же, как и для металлов без покрытий, т. е. с учетом характера создаваемой среды. [c.93]

    Поскольку свойства лакокрасочных покрытий сильно зависят от воздействия света, даже при погружении в электролит следует предусмотреть одинаковую освещенность всех испытуемых образцов. В том случае, когда необходимо выяснить влияние ватерлинии на защитные свойства покрытий, окрашенные образцы помещают в электролит лишь на /з их длины. [c.94]

    Электрохимический метод оценки защитных свойств лакокрасочных покрытий [c.99]

    Существует ряд электрохимических методов для оценки защитных свойств лакокрасочных покрытий в лабораторных условиях. Эти методы описаны в гл. 2 и основаны на наложении постоянного тока, что может привести к преждевременному разрушению материала покрытия, а также требует учета омического сопротивления лакокрасочной пленки. [c.99]

    Наибольшее распространение получил импедансный метод оценки защитных свойств как тонкослойных лакокрасочных покрытий, так 1И систем покрытий [50—52]. [c.100]

    Исходя из этого, за критерий оценки защитных свойств лакокрасочных покрытий в этом методе принято изменение частотной зависимости емкости и сопротивления окрашенного металла в электролите. Экспериментально было установлено, что измерения составляющих импеданса достаточно проводить при трех частотах 500, 1000 и 20 000 Гц. [c.100]

    Фосфатирование широко применяют для защиты изделий от коррозии и для подготовки поверхности перед нанесением лакокрасочны покрытий При нанесении на фосфатную пленку сокращается расход де- фицит тых, дорогостоящих лакокрасочных материалов. Защитные свойства фосфатных покрытий выше, чем оксидных, полученных в щелочных растворах. [c.254]

    Преимуществом этого метода оценки защитных свойств лакокрасочных покрытий является то, что он позволяет получить объективные данные о защитных свойствах покрытий и их изменении под влиянием коррозионной среды задолго до появления видимых коррозионных поражений. [c.103]

    В настоящее время существуют различные точки зрения на то, какими свойствами определяется защитная способность покрытия. По мнению одних исследователей, главную роль играет адгезия по мнению других, — диффузионные ограничения, создаваемые пленкой некоторые исследователи придают большое значение высокому омическому сопротивлению лакокрасочных пленок [55], способствующему повышению их защитной способности. На самом же деле защитные свойства лакокрасочных покрытий определяются суммой физико-химических свойств, которые могут быть сведены к четырем основным характеристикам [20]  [c.104]


    Таким образом, можно с уверенностью утверждать, что роль лакокрасочного покрытия сводится не только к изоляции металла от среды систему металл — полимерное покрытие следует рассматривать как своеобразную электрохимическую систему, что необходимо учитывать при выборе пути повышения защитных свойств покрытий. [c.125]

    Традиционно повышение защитных свойств лакокрасочных покрытий достигалось введением пассивирующих пигментов, которые обеспечивали сохранность металла и в случае проникновения коррозионно-активных реагентов через полимерную пленку. Перспективным является и введение ингибиторов в покрытие. [c.169]

    В этом случае при проникновении электролитов через лакокрасочные покрытия пассивирующие ионы ингибиторов, отщепляясь благодаря гидролизу или диссоциации, предотвращают коррозионные процессы. При кажущейся простоте способа он сопряжен со значительными трудностями. Объясняется это тем, что ингибиторы как поверхностно-активные вещества или окислители могут взаимодействовать с пленкообразующим, теряя свои защитные свойства. Кроме того, при введении ингибиторов в такие многофункциональные системы, как лакокрасочные материалы, их взаимодействие с пленкообразующими или пигментами может привести к образованию новых продуктов, которые могут обладать как защитными, так и агрессивными свойствами. [c.169]

    Как показали М. М. Гольдберг и Н. Д. Томашов, электрохимический метод можно применять для определения защитных свойств различных лакокрасочных покрытий на стали по величине тока пары стальной образец с покрытием — насыщенный каломельный электрод, а также для установления механизма действия покрытия по значениям потенциалов окрашенного и неокрашенного образца в растворе электролита (например, в 3%-ном Na l). Схема простой установки для этих целей приведена на рис. 356. В течение испытаний измеряют поочередно величину [c.463]

    В соответствии с взглядами Н. Д. Томашова, В. С. Киселева и М. М. Гольдберга, защитные свойства антикоррозионных лакокрасочных покрытий складынаются из многих факторов адгезионной способности пленки, ее сплошности, степени набухаемости, пассивирующего действия содержащихся в ней пигментов на металл, значения pH в пленке и др. Поэтому объяснить механизм защитного действия лакокрасочного покрытия влиянием только одного из перечисленных факторов нельзя, и его количественная оценка не может однозначно характеризовать защитную эффективность покрытия. Критерием защитной способности должна служить скорость протекания процесса электрохимической коррозии металлической поверхности под лакокрасочной пленкой [17].  [c.27]

    Лаки на основе каменноугольной смолы (или пека) обладают высокой водостойкостью и широко используются для защиты подводных сооружений и подземных трубопроводов. Недостаток битумных покрытий — их низкие атмосферостойкость и маслостойкость и относительно быстрое ухудшение физико-механических свойств при старении. Лакокрасочные материалы на основе эпоксидно-пековых смол лишены этих недостатков. Высокие защитные свойства и долговечность эпоксидно-пековых покрытий, особенно в условиях воздействия морской и пресной воды, можно объяснить тем, что при введении в эпоксидный состав битума не только повышается адгезия при соответствующем снижении внутренних напряжений, водонабухаемости, водопроницаемости, но за счет ряда соединений, входящих в состав каменноугольной смолы, обеспечивается дополнительное защитное действие. [c.78]

    Защитные свойства эпоксидных лакокрасочных материалов существенно зависят от вида отвердителя, применение которого определяет процесс горячей или холодной (при температуре не ниже 15—20° С) сущки лакокрасочного покрытия. Для противокоррозионной защиты резервуаров обычно применяют лакокрасочные материалы холодной сушки. В качестве отвердителей для этих материалов широко используют алифатические амишз (полиэтиленполиамин и гекса. етилендиамнн) и низкомолекулярные полиамидные смолы. [c.93]

    Введением ингибирующих присадок может быть обеспечено также повышение защитной способности лакокрасочных покрытий. Так, модифицированные сульфонатами и серофосфорсодержащими веществами изолирующие глифталевые грунтовки по своим защитным свойствам не уступают пассивирующим, модифицированным фосфатом хрома, хроматом кальция, хроматом свинца, тетраоксихроматом цинка, но по сравнению с последними не содержат токсичных хроматов, которые, кроме того, легко восстанавливаются с образованием трехвалентного хрома, не принимающего участия в процессе ингибирования. [c.176]

    В. А. Каргин с сотрудниками [18], а также ряд другнх исследователей [29], не отрицая роли покрытия как барьера для проникания агрессивных веществ, считают, что основным фактором, определяющим защитное действие покрытия, являются адгезионные свойства последнего. Высокая прочность сцепления покрытия с металлом препятствует возникновению новой фазы на границе металл — покрытие, вследствие чего увеличивается работа, необходимая для отрыва пленки от подложки и образования окисла. Это положение они обосновывают весьма вескими доказательствами во-первых, если защитную способность пленок оценивать по скорости проникания через них агрессивных веществ, то продолжительность защитного действия покрытий была бы во много раз меньше, чем наблюдаемая на практике, и, во-вторых, защитное действие покрытия не находится в прямой зависимости от его толщины, поскольку увеличение толщины лакокрасочной пленки больше определенного предела, как правило, ухуд- [c.26]

    В последние годы все большее внимание уделяется разработке систем покрытий, не содержащих органических растворителей. Такие покрытия, обладая всеми свойствами аналогичных лакокрасочных систем, содержащих растворители, характеризуются высокими физико-механическими защитными свойствами,, а также позволяют рдновременно эффективно и экономично решать проблему полного использования сырья и охраны окружающей среды. Разработка подобных систем ведется в трех направлениях  [c.56]

    Ницберг Л. В., Якубович С. В., Колотыркин Я. М. Электрохимические исследования защитных свойств лакокрасочных материалов и покрытий по стали в среде электролитов. — Лакокрасочные материалы и их применение , 1960, N5 1, [c.116]

    Розенфельд И. Л., Бурьяненко В. Н., Жигалова К- А. Результаты исследования защитных свойств лакокрасочных покрытий емкостно-омиче-ским методом. — Лакокрасочные материалы и их применение , 1966, Ко 5. [c.116]

    Краска — это суспензия твердых минеральных, как правидо, частиц в олифе, растительном масле, водной дисперсии полимеров. В результате потери летучих компонентов или химических реакций краска, нанесенная на твердую поверхность тонким слоем, превращается в покрытие, причем непрозрачное и, как правило, без блеска. Минеральные частицы, входящие в краску, разделяют по назначению на две группы пигменты и наполнители. Пигменты — частицы окрашенных веществ, чаще всего это или окислы металлов, или соли. Назначение пигментов — придавать цвет покрытию. Иногда пигменты попутно выполняют и роль вещества, повышающего защитные свойства покрытия. Назначение наполнителей — увеличивать объем лакокрасочного материала, снижать удельный расход наиболее дорогих компонентов краски — пленко-образователя и пигментов. [c.10]

    Эпоксидные лакокрасочные материалы с минимальным содержанием растворителей. Материалы, не содержащие растворителей или содержащие их в минимальных количествах, имеют значительные преимущества. При их применении снижается пожароопасность, улучшаются условия труда, возможно нанесение утолщенных слоев покрытий, вследствие чего упрощается технологический процесс, улучшаются физико-механические и защитные свойства покрытий. Достигается это введением в эпоксидную композицию реакционноспособных растворителей — мо-ноглнцидиловых эфиров. [c.81]

    По мере увеличения несплошБости покрытия и поя1Вления участков с прямой проводимостью электролит достигает поверхности металла, и измеряемая емкость будет определяться суммой электрической и электрохимической составляющих. Электрическая емкость мала по величине и не зависит от частоты, а электрохимическая емкость сильно зависит от частоты и возрастает по величине под воздействием электролита. Сопротивление зависит от частоты переменного тока в том случае, когда покрытие обладает высокими изоляционными свойствами, что характерно для начального момента воздействия электролита на лакокрасочное покрытие и для покрытий с высокими защитными свойствами. Для покрытий с низкими защитными свойствами характерно отсутствие или малая зависимость сопротивления от частоты. [c.100]


Библиография для Покрытия лакокрасочные защитные свойства: [c.115]    [c.99]   
Смотреть страницы где упоминается термин Покрытия лакокрасочные защитные свойства: [c.146]    [c.238]    [c.84]   
Эпоксидные полимеры и композиции (1982) -- [ c.181 ]




ПОИСК





Смотрите так же термины и статьи:

Защитные покрытия лакокрасочные

СВОЙСТВА ЗАЩИТНЫХ ПОКРЫТИИ

Свойства защитные



© 2025 chem21.info Реклама на сайте