Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лист поглощение, рассеяние и отражение света

    Методы определения поглощения света, основанные на измерении различий между количеством падающего света и количеством света, прошедшего через объект, а также отраженного и рассеянного им, обсуждаются в гл. III. Если при определении спектров поглощения с помощью этих методов используются узкие спектральные полосы падающего света, то полученные результаты выражают действительное поглощение данного объекта—листа, суспензии клеток или суспензии изолированных хлоропластов. Однако объяснить эти спектры, исходя из оптических свойств отдельных пигментов, чрезвычайно трудно. Особенно трудно интерпретировать спектры поглощения листьев. Проникающий в лист свет проходит через неоднородную среду. Сначала он отражается и преломляется клеточными стенками, особенно в листьях наземных растений, у которых межклетники заполнены воздухом затем он рассеивается множеством внутриклеточных частиц разной величины, обладающих разными показателями преломления. Следовательно, пути света в листе различны и длина их неизвестна. Часть света может вообще не попасть в хлоропласты, тогда как другая часть пройдет через несколько пластид или даже несколько раз через один и тот же хлоропласт. Для суспензий одноклеФочных водорослей или хлоропластов эта неопределенность длины оптического пути меньше, но и в этих случаях она довольно значительна. Известно, что резкое изменение показателя преломления приводит к рассеянию части света. Рассеяние на поверхности клеток водорослей, являющееся результатом различия в показателях преломления их стенок и воды, можно почти полностью исключить, суспендируя клетки в концентрированном растворе белка, показатель преломления которого близок к показателю преломления клеточных стенок [10]. Рассеяние внутри клеток может быть более значительным вследствие того, что рассеивающие свет частицы в этом случае меньше, а также из-за присутствия пигментов. При наличии очень мелких частиц, диаметр которых меньше длины волны света, величина рассеяния обратно пропорциональна четвертой степени длины волны (релеевское рассеяние). Это в высшей степени избирательное рассеяние особенно сильно увеличивает среднюю длину пути коротковолнового света. Для бесцветных частиц больших размеров величина рассеяния в меньшей степени зависит от длины волны. Однако показатель преломления пигментов резко меняется в области их полое поглощения (аномальная дисперсия), вследствие чего [c.39]


    Из всех внешних факторов, вероятно, труднее всего контролировать абсолютное количество света, используемое в фотосинтезе. По этой причине в большинстве экспериментальных работ или наблюдений приводятся лишь относительные значения интенсивности света. На первый взгляд абсолютной мерой количества света могла бы служить световая энергия, падающая на единицу площади поверхности в единицу времени Дж-м 2.с- . Такая мера была бы почти удовлетворительной для монохроматического света, падающего на известную площадь поверхности хлоропласта, при условии, что можно учесть свет, теряемый на отражение, рассеяние и пропускание, и тем самым определить количество поглощенного света. Однако при таком подходе возникает ряд трудностей одни из них связаны с использованием света различных длин волн, другие —с оценкой площади эффективной поглощающей поверхности и третьи — с определением потерь света. Помимо уже упомянутых источников потерь, имеется и еще один —в листьях или в интактных клетках водорослей могут присутствовать пигменты, не участвующие в фотосинтезе, которые будут поглощать часть света прежде, [c.108]

    Статистическая теория этого вопроса (см. стр. 121) позволяет вычислить А из измерений пропускания света в одном направлении, при двух или более оптических плотностях рассеивающего материала, т. е. с серией из нескольких листьев или с несколькими суспензиями клеток разной концентрации или толщины слоя. Лучше, однако, не обращаясь к этим теоретическим выражениям, особенно в случае работы с листьями или слоевищами, действительно измерять световые потоки, пропущенные и отраженные по всем направлениям. Определив экспериментально Т и R, можно использовать точное уравнение (22.4) для оценки А. Теоретические урав 1ення с учетом поглощения и рассеяния целесообразно использовать в тех случаях, когда не удовлетворяются знанием количества поглощенной энергии, но желают также знать коэффициенты поглощения, например как показатели молекулярного состояния пигмента в живой клетке. [c.84]

    Источники ошибок при измерении флуоресценции еще более многочисленны, чем при измерении поглощения. Свет флуоресценции, который должен быть измерен, необходимо с помощью фильтров отделить от выходящего из клетки рассеянного возбуждающего света (часть этого света может иметь ту же или почти ту же длину волны см. фиг. 18 и фиг. 23). Еще одним источником ошибок является реабсорбция излучаемого света внутри самой клетки ее, однако, можно свести к минимуму, если использовать ткани с. очень низким содержанием хлорофилла. На фиг. 23 показан спектр флуоресценции белых участков листа пестролистной разновидности плюща видно, что он сильно напоминает спектр флуоресценции хлорофилла а в эфире (фиг. 8, Л), хотя и с некоторым смещением максимума в длинноволновую сторону (как это характерно также для спектра поглощения in vivo). В нормальном листе реабсорбция вблизи максимума поглощения хлорофилла а значительно уменьшает интенсивность флуоресценции и еще больше сдвигает максимум в длинноволновую сторону. В то же время дальний красный максимум флуоресценции при 740 нм, где хлорофилл поглощает совсем слабо, в нормальном листе оказывается значительно выше благодаря более высокому содержанию хлорофилла. Рассеяние и внутреннее отражение в листе, которые увеличивают реабсорбцию, удлинняя путь света, можно уменьшить, инфильтрируя межклетники водой [304]. Этот же метод можно использовать и для улучшения спектров поглощения. [c.45]


    Определение поглощения света в растворах или других гомогенных средах является хорошо известной операцией, результаты которой допускают простое, основанное на законе Бэра истолкование и выражаются в молекулярных коэффициентах поглощения, называемых также коэффициентами экстинкции (попытки придать различный смысл этим терминам не имели успеха на практике). Экспериментальное определение поглощательной способности растений является менее простым, и часто точный смысл результатов проблематичен. Измерения световой энергии, поглощенной листьями, водорослями или суспензиями клеток, осложняются рассеянием, которое имеет местр не только в тканях, но даже и в суспензиях отдельных клеток, потому что размеры клеток ( 10- см) больше, чем длина волны видимого света ( 5- 10 см). Выражение результатов в терминах констант поглощения пигментов усложняется не только рассеянием света на границах фаз, но и неоднородным распределением пигментов в клетках и тканях, а также смещением и деформацией полос поглощения вследствие адсорбции и образования комплексов. Пусть, например, мы измерили энергию / пучка света, падающего на растительный объект (лист, слоевище или суспензию клеток), и энергию Г пучка, выходящего из этого объекта, приняв меры к тому, чтобы суммировать выходящий пучок по всем направлениям, с учетом не только света, проходящего вперед (Г), но и отраженного назад (/ ) это позволит избежать грубых ошибок, которые может внести рассеяние. [c.81]

    Отдельно ртоящие деревья и другие растения получают и поглощают свет, приходящий со всех сторон многие листья или листочки ориентируются при этом перпендикулярно направлению падения света, приспосабливаясь к максимальному его использованию. То же самое часто наблюдается у оранжерейных растений и даже у многих листьев в посеве. Чтобы измерить в абсолютных единицах весь свет, поглощенный растением, нужно было бы радиометр или фотоэлемент (с косинусной поправкой) поставить параллельно каждому листу, измеренную освещенность умножить на площадь листа и просуммировать эти значения для всех листьев. Однако даже и при таком способе измерения света все еще оставалась бы проблема потерь на рассеяние, отражение и пропускание. Относительные потери можно определить, как описано выше для посева, но детекторы при этом придется помещать параллельно касательным к кроне дерева. [c.119]


Смотреть страницы где упоминается термин Лист поглощение, рассеяние и отражение света: [c.84]    [c.117]   
Фотосинтез (1972) -- [ c.35 , c.37 , c.39 , c.122 , c.124 ]




ПОИСК





Смотрите так же термины и статьи:

Лист Листья

Листов

Поглощение и рассеяние света

Рассеяние света



© 2024 chem21.info Реклама на сайте