Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вольфрам бронзы

    Отливки цз алюминия и магния чистые и слаболегированные Штамповки (чистые и низколегированные) сталь, алюминий, магний, серебро, никель, вольфрам, титан Неметаллы стекло, фарфор Пластики (полистирол, оргстекло, резина) Отливки алюминиевые и магниевые сплавы, низколегированная сталь, чугун со сфероидальным графитом Штамповки медь, латунь, бронза, металлокерамика [c.278]

    Калиевые бронзы легко получить действием иаров металлического калия на оксид ШОз. В этом случае решеткой (матрицей) будет оксид ШОз, имеющий структуру типа КеОз, в которой вольфрам занимает октаэдрическое положение, а атомы натрия занимают вершины соответствующих кубов (рис. 39). Область существования вольфрамовых бронз простирается только от. У = 0,2б до. 2 = 0,93. Физико-химические свойства зависят от содержания катионов. С их увеличением повышается электрическая проводимость. [c.101]


    В качестве материала электрода-инструмента чаще всего используют латунь, медь и бронзу, а для наиболее прецизионных работ —вольфрам, например в виде вольфрамовой проволоки. При обработке твердых сплавов для изготовления инструмента применяют также чугун, а при разрезных операциях — сталь. [c.363]

    МЕДИ СПЛАВЫ — сплавы на ото ве меди. В виде бронзы применялись за 3000 лет до н. э. В жидком состоянии медь сплавляется со многими элементами, с большинством из них — в любом соотношении. Лишь вольфрам, молибден, осмий, рутений и тантал практически не сплавляются с нер. В твердом состоянии макс. растворимость элементов (в альфа-твердом растворе меди) изменяется в очень широких пределах от сотых и десятых долей процента (хром, ниобий, свинец, ванадий, цирконий) до процентов (серебро, алюминий, мышьяк, бериллий, кадмий, кобальт, железо, магний, кремний, титан и др.) и десятков процентов (индий, олово, цинк). Неограниченно растворяются никель, золото, марганец, палладий и платина. Однако с золотом, марганцем, палладием и платиной М. с. в твердом состоянии претерпевают превращения. С увеличением концентрации легирующего элемента в альфа-твердом растворе меди повышается мех. прочность сплавов их теплопроводность и электропроводность уменьшаются (менее всего при легировании серебром). К вредным примесям относятся висмут, сурьма, свинец и углерод (в медноникелевых сплавах), к-рые приводят к хрупкости. Стойкость против коррозии М. с. зависит от природы легирующего элемента и окружающей среды. Повышают стойкость никель, олово и алюминий. С понижением т-ры раст  [c.780]

    Связь цвета с различными степенями окисления атома моле-кулы- гостя (нанример, серы в ультрамарине) является довольно обычной. В качестве дополнительного примера рассмотрим вольфрамовые бронзы. Вольфрам в них может быть как пяти-, так и шести- [c.301]

    При испытании тонких или пористых покрытий из золота появляется слабо окрашенное пятно в том случае, когда испытывается позолота на серебре, в пятне видны темные части (серебро). Очень тонкое покрытие по меди или латуни не может быть открыто этим способом. Открытие золота возможно в присутствии ряда других металлов и сплавов (никель, серебро, платина, палладий, иридий, пр ипой, латунь, белые металлы, бронза, сталь, марганец, молибден, тантал, вольфрам, ртуть, кадмий, алюминий, олово, цинк, свинец). [c.216]

    Бронзы алюминиевые и оловянистые Вольфрам [c.68]

    Алюминий Бронза. Вольфрам, Латунь. Медь [c.20]

    Известны электрофизические свойства некоторых сложных вольфрамовых окислов. Вольфраматы натрия и лития являются полупроводниками [86]. Вольфрамат лития характеризуется большим температурным коэффициентом и большим сопротивлением, чем вольфрамат натрия. Удельная электропроводность литий-вольфрамовой бронзы при комнатной температуре составляет 7 10 , а натрий-вольфра-мовой — 2,7 10 ом -м . Коэффициент термо-э.д.с. для обоих сложных окислов отрицателен по знаку. Экспериментально показано существование электронного, а не [c.25]


    Для снижения переходного сопротивления и улучшения коррозионной стойкости контакты, применяемые в радиоэлектронике, покрывают благородными металлами. Однако золотые и серебряные покрытия недостаточно износостойки, поэтому целесообразнее применять покрытия из сплавов, которые к тому же дешевле покрытий чистыми металлами. В табл. 25 и 26 приведены результаты исследования износостойкости и переходное сопротивление покрытий из сплавов золота, серебра, белой бронзы и вольфрам-кобальта [182]. [c.68]

    В последнее время с целью разработки электрокатализаторов с возрастающим успехом проводили исследования стабильных и смешанных окислов. Среди них в качестве катализатора для восстановления О2 исследуют нестехиометрические соединения, известные под названием бронз . Общая формула бронзы — М ТОу, где М — щелочной или щелочноземельный металл, а Т — переходный металл, такой, как вольфрам, тантал, ниобий, титан или ванадий. Химическая устойчивость и высокая проводимость многих бронз позволяют использовать их Б качестве катализаторов для кислородной реакции. [c.427]

    Вольфрамовые бронзы представляют собой соединения с общей формулой Me WOз (где Ме — щелочной металл х изменяется в пределах ОС > < 1, чаще равен 0,1—0,3). Ранее общая формула бронз принималась схематически пЖе О-пг 2О5 pWOз в предположении, что вольфрам в них одновременно пяти- и шестивалентен. Бронзы выделены в виде порошков от синего до золотистого и ярко-красного цвета. Получаются они восстановлением паравольфраматов щелочных металлов сухим водородом или электролизом — при быстром охлаждении расплавов паравольфраматов, при нагревании смесей вольфраматов щелочных металлов с порошком W и АУОг в вакууме [5]. Первым способом бронзы впервые получены Велером еще в 1824 г., а позднее В. И. Спициным, А. С. Кокуриной и Е. А. Никитиной [5]. Вольфрамовые бронзы обладают кубической (типа перовскита) или гексагональной структурой химически устойчивы. [c.234]

    Дисперсноупрочненные материалы — более широкий класс композитов, чем металлы, упрочненные волокнами. Напомним, что дисперсноупрочненными называют металлические материалы, упрочненные дисперсными частицами тугоплавких соединений. Отличительной особенностью их является наличие высокодисперсных, равномерно распределенных на заданном расстоянии друг от друга частиц фазы упрочнителя, не взаимодействующ,их активно с матрицей, не растворяюш,ихся в ней вплоть до температуры плавления и искусственно вводимых в сплав на одной из технологических стадий его приготовления. Первый дисперсноупрочнен-ный материал (вольфрам, упрочненный ТЬОз) был создан свыше 60 лет назад. Л1аксимальный эффект упрочнения достигается при достаточно малом размере частиц (0,01—0,06 мкм), их равномерном распределении и оптимальном расстоянии между ними (0,1—0,5 мкм). Обш,ее количество упрочняющей фазы обычно не превышает 5—107о. В отличие от дисперсионно-твердеющих сплавов, у которых упрочняющая дисперсная фаза выделяется из пересыщенного твердого раствора (дюралюминий, бериллиевые бронзы, железо-никелево-хромовые сплавы), в дисперсноупрочнен-ных композиционных материалах эта фаза вводится искусственно. Наиболее известные дисперсноупрочненные композиционные материалы — ТД-никель (N1-1-0,2% ТЬОз), ТД-нихром (N 4-20%, Сг + 2% ТЬОз), В9У-1 (N14-2,5% ТЬОг), [c.155]

    В иеаэрнруемых растворах при нормальной температуре сравнительно стойки медь, медноникелевые сплавы и оловяннстые бронзы. Вольфрам разрушается а расплавленной соли со значительной скоростью. [c.824]

    НАЗВАНИЕ ВОЛЬФРАМОВАЯ БРОНЗА ОБМАНЧИВО. Нередко приходится слышать о вольфрамовых бронзах. Что это за металлы Внешне они очень красивы. Золотистая вольфрамовая бронза имеет состав КаоОЛУОгЛУОз, а синяя — а20- У02-4 У0з пурпурно-красная и фиолетовая занимают промежуточное положение — соотношение УОз к УОг в них меньше четырех, но больше единицы. Как видно из формул, эти вещества не содержат ни меди, ни цинка, ни олова, т. е., строго говоря, они вовсе не бронзы. Они вообще не сплавы, та1 как здесь нет чисто металлических соединений и вольфрам, и патрий окислены. Бронзу они, однако, на-, поминают не только цветом и блеском, ио и твердостью, устойчивостью к химическим реагентам и большой электропроводностью. ПЕРСИКОВЫЙ ЦВЕТ. Приготовить эту краску было очень трудно она не красная и не розовая, а какого-то промежуточного цвета и с зеленоватым оттенком. По преданию, для того чтобы ее открыть, пришлось провести около 8000 опытов с различными металлами и минералами. В XVII в. в персиковый цвет окрашивали наиболее дорогие фарфоровые изделия для китайского императора на заводе в провинции Шаньси. Когда секрет изготовления этой краски был открыт, оказалось, что ее основу составляет окись вольфрама. [c.189]

    Соединения вольфрама (бронзы) применялись очень широко как красители. В Китае сохранились старинные, относящиеся к XVII в., изделия из фарфора, окрашенного в необычайный цвет персика иоследования показали, что краска содержит вольфрам. [c.101]

    Работы Хэгга по натрий-вольфрамовым бронзам [143] показали, что при составе N 0,3 03 имеются две фазй. Магнели [224] отмечал, что одна из них изоморфна калий-вольфрамовым бронзам, известным с 1836 г. [211]. Структура обеих фаз показана на рис. 48. Вольфрам- [c.136]

    Вольфрам-натриевые бронзы состава Na e WO3 и Naa jWOg при 1270—1670 К почти полностью диссоциируют на натрий и окислы вольфрама [177, с. 180, 405]. Чижиков и др. [177, с. 179] приводят масс-спектры СаМо04 и aW04, испарявшихся из молибденовых и вольфрамовых тиглей. Папп и да. [259 изучили испарения молибдата и вольфрамата бария потенциалы появления (в эВ) этих соединений таковы  [c.111]


    Согласно Philip р у, при анализе вольфрамовых бронз удобно переводить их в растворимое состояние аммиачным раствором серебра. Растворение бронзы сопровождается выделением серебра. Остающееся в фильтрате серебро осаждают, после чего выделяют вольфрам хлористым бензидином по методу Кпогге (стр. 516). Богатые вольфрамом бронзы удобно переводить в растворимое состояние действием чистого надсернокислого аммония по способу Brunner a.=  [c.552]

    Вольфрам. Синий окисел, образующийся при восстановлении в токе сухого водорода, имеет состав промежуточный между W0, и ГО и, повидимому, аналогичен молибденовой сини. Вольфрамовые бронзы получаются в результате восстановления вольфраматов щелочных или щелочноземельных металлов водородом или расплавленным цинком. Они обладают различной окраской и отличаются своим металлическим блеском. Натрийсодержащие бронзы изучались рентгенографическими методами (см. стр. 380). Они содержат некоторое количество востановленного до У , причем на каждый такой атом приходится атом натрия, что дает общую формулу [c.266]

    Легированные стали. Как разнообразны применения стали, так разнообразны и предъявляемые к ней в каждом случае требования. От строительной или конструкционной стали (арматура зданий, мосты, суда) требуется высокая прочность и хорошая свариваемость, от инструментальной (режущий, мерительный и штамовый инструмент) — высокая твердость и износоустойчивость, от стали других назначений — упругость, жаростойкость, жароупорность, кислотоупорность, высокие магнитные свойства (сердечники электромагнитов) или, наоборот, немагнитность. Придание стали заданных механических, физических или химических свойств достигается введением в нее добавочных, легирующих элементов, по одному, по два и более. В качестве легирующих элементов в металлургии используются главным образом металлы старших групп периодической системы ванадий, хром, марганец, вольфрам, молибден, никель, а из металлоидов кремний и бор. Легирующие элементы либо образуют в массе сплава химические соединения с его другими составными частями, чаще всего карбиды, либо же при затвердевании сплава кристаллизуются в виде твердого раствора в а-, а иногда в у-железе. Так, при затвердевании высоколегированных никелевых и марганцевых сталей превращения у-железа в а-железо не происходит, и затвердевшая сталь представляет твердый раствор никеля или марганца в у-железе. Большинство легированных сталей и прочих промышленных сплавов, как дюралюминий, электрон, латунь, бронза, имеют структуру твердых растворов. [c.699]

    Для ванадия известно несколько степеней окисления. Для титрования ванадия(II) в модельных растворах и искусственных смесях предложено использовать электрогенерированное железо(III) с биамперометрической индикацией к. т. т. После растворения пробы амальгамой цинка восстанавливают ванадий(У) и (IV) до V" и титруют его железом(1П) на фоне серной кислоты при pH > 1 [474]. Разработаны методики определения и V в смесях ионов марганца, хрома и ванадия [475], сталях, содержащих молибден и вольфрам [476, 477], и в сплавах [478, 480—482]. Для индикации к. т. т. предложены потенциометрический и биамперометрический методы. Электрогенерированные титранты из металлоактивных электродов — металлического ванадия, олова, меди и хрома —применены для определения ванадия в инструментальных сталях, сплавах, хромитовых рудах [483, 484—490, 497], латунях, бронзах [494— 497], металлическом цинке [497—499]. [c.75]

    Вольфрамовые бронзы представляют собой соединения с общей формулой Мвх Оз (где Ме — щелочной металл х изменяется в пределах 0<х<1, чаще равен 0,1—0,3). Ранее общая формула бронз принималась схематически п МегО т и гОз р " УОз в пред-положении, что вольфрам в них одновременно 5- и 6-валентен. [c.314]

    Пример легкого и вместе с тем твердого сплава — электрон. Он содержит магний, алюминий, марганец и цинк. Сплав победит, содержащий углерод, вольфрам и кобальт — один из самых твердых сплавов, известных в настоящее время. По твердости он приближается к алмазу. Сплав Вуда, содержащий висмут, кадмий и олово, имеет сравнительно низкую температуру плавления (около 70°С), поэтому его применяют в электротехнике для изготовления легкоплавящихся предохранителей. Давно известными сплавами являются бронзы разного состава, содержащие главным образом медь и олово. [c.195]

    Особенно широко распространены визуальные анализы по методу гомологических пар, ставящие своей задачей определение марки металла. Эти анализы используются, например, для маркировки сталей, алюминиевых сплавов, латуней, бронз и т. д. Для их проведения разработана специальная аппаратура — стилоскоп (см. 24). Исследуемый металл в виде прутка, готового изделия, детали машины и т. д., включается в качестве одного из электродов дуги вторым электродом служит обычно при анализе сталей пругок углеродистой стали, при анализе бронз и латуней — пруток из электролитической меди, и т. д. Спектр дуги рассматривается с помощью стилоскопа и наблюдатель, оценивая интенсивность выбранных для анализа линий легирующих элементов по отношению к соседним линиям основного элемента, получает возможность оценить с помощью специальных таблиц примеров содержание каждого элемента в пробе. Совокупность анализов по зсем элементам позволяет определить марку металла. В качестве примера мы приводим на рис. 169 вид одной из групп линий, используемых при анализе на хрой и вольфрам. [c.174]


Смотреть страницы где упоминается термин Вольфрам бронзы: [c.337]    [c.634]    [c.155]    [c.337]    [c.62]    [c.690]    [c.836]    [c.136]    [c.666]    [c.756]    [c.657]    [c.111]    [c.691]    [c.691]    [c.691]    [c.152]    [c.231]    [c.327]    [c.128]    [c.672]    [c.111]   
Химический энциклопедический словарь (1983) -- [ c.107 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.107 ]




ПОИСК





Смотрите так же термины и статьи:

Бронзы



© 2025 chem21.info Реклама на сайте