Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цикл регенеративный

    Холодопроизводительность <7 цикла регенеративной машины  [c.126]

    Как будет подробно рассмотрено ниже, и в данном случае, путем включения в цикл регенеративного теплообмена можно снизить температурный уровень получаемого холода. [c.33]

    Холодопроизводительность цикла регенеративной машины [c.112]

    ШИМ примером является процесс риформинга бензино-лигроиновых фракций для получения высокооктанового бензина. Как и во всех процессах превращения углеводородов при высоких температурах, здесь происходит отложение угля на поверхности катализатора. Однако это можно предотвратить, применяя большой избыток водорода (от 3 до 10 моль водорода на 1 моль сырья). Хотя водород сдвигает химическое равновесие в неблагоприятную сторону, процесс в целом проходит исключительно успешно и фактически вытесняет процессы регенеративного типа с псевдоожиженным и движущимся слоями катализатора для его осуществления требуется простое оборудование с неподвижным слоем катализатора. В некоторых процессах риформинга восстановление активности проводят периодически с интервалом в несколько дней или недель. Ниже приведены рабочий и регенерационный циклы процесса риформинга лигроина на платиновом катализаторе в неподвижном слое  [c.318]


    Процесс проводится попеременно в двух регенеративных печах. Во время разогрева насадки одной печи в другую подается сырье, которое подвергается пиролизу с образованием ацетилена. Переключаются печи автоматически, цикл их работы составляет 60 сек. [c.59]

    Подогреватели воздуха бывают рекуперативного и регенеративного типа. В рекуперативных подогревателях тепло постоянно передается через стены, так как с одной стороны проходят дымовые газы, а с другой — воздух в горелки. У регенеративного типа тепло дымовых газов сначала поглощается насадкой регенератора и затем передается воздуху. Насадка при каждом цикле нагревается и охлаждается. В настоящее время часто используются ротационные регенеративные подогреватели. Ротор, вращающийся со скоростью 3—5 об/мин, изготовлен из дырчатого металла, который имеет большую величину отношения площади к весу материала. При вращении ротор периодически проходит места, через которые протекают горячие газы и воздух. Раньше устанавливались вентиляторы на обоих потоках, теперь в неко- [c.43]

    Кислородные изолирующие аппараты обеспечивают замкнутый регенеративный цикл дыхания, полностью изолированный от внешней среды. Выделяемые с выдыхаемым воздухом СО2 и Н2О поглощаются специальным поглотителем, израсходованный при дыхании кислород пополняется из носимого запаса кислорода или сжатого воздуха. К числу приборов, в которых для пополнения используется непосредственно кислород, относятся кислородные изолирующие противогазы КИП-7 и КИП-8, а к приборам, где потребность в кислороде пополняется из сжатого воздуха— воздушно-легочные автоматические дыхательные аппараты ВЛАДА-1 и ВЛАДА-2, ныне заменяемые более совершенным аппаратом АСВ-2. [c.90]

    Термический крекинг осуществляется в регенеративных печах при 1450—1600°С. Газ соприкасается с поверхностью заранее нагретой насадки. При наличии двух печей, соединенных одной топкой, можно обеспечить непрерывный процесс по циклу 1 мин — нагрев насадки и 1 мин — крекинг, что способствует максимальному использованию теплоты. Более широко распространен термоокислительный крекинг (пиролиз), в котором необходимая теплота получается за счет сжигания части метана  [c.181]

    Р. Каналы с диффузными стенками. Конструктор может захотеть получить оценку роли аксиального излучения, например, в воздухоподогревателе или в регенеративном теплообменнике, использующемся в двигателях, работающих по циклу Брайтона или Стирлинга. Утечка теплового излучения через отверстие или трещину в тепловой изоляции является обычным делом. Ниже для определения плотности теплового потока вдоль канала используется алгебра угловых коэффициентов. Если плотности потоков эффективного излучения боковых стенок канала известны (в случае, когда известно распределение температуры и стенки черные) или для них можно использовать разумные аппроксимации (для канала с адиабатными стенками), получаемые выражения можно непосредственно использовать на практике. Если плотности потоков эффективного излучения стенок неизвестны и для них нет подходящих аппроксимаций, то задачу легко сформулировать излагаемым здесь способом, а затем ее решение можно искать численными методами. В современной практике, однако, принято использовать метод Монте-Карло, описанный в 2.9.4. [c.475]


    Простой регенеративный цикл (Линде) с изоэнтальпическим расширением сжатого газа и схема холодильной машины, в которой он осуществляется, показаны па рис. 9-18. Исходный газ сжимается (1—2) изотермически при температуре Т и затем охлаждается (2—3) при постоянном давлении за счет холода обратного газа. Далее [c.222]

Рис. 9-18. Простой регенеративный цикл (Линде) с изоэнтальпическим Рис. 9-18. <a href="/info/739094">Простой регенеративный цикл</a> (Линде) с изоэнтальпическим
    Регенеративный цикл с изоэнтальпическим расширением и предварительным охлаждением. Расход энергии на ожижение газа с применением простого регенеративного цикла Линде в несколько раз больше теоретически необходимого, что объясняется необратимым увеличением энтропии прн дросселировании сжатого газа. [c.224]

    Регенеративный цикл с изоэнтропическим расширением. Эффективным является цикл, основанный на изоэнтропическом расширении предварительно сжатого газа. Примером такого холодильного цикла может служить цикл Клода, показанный на рис. 9-20. [c.225]

    С точки зрения создания эффективных условий для пиролиза углеводородного сырья регенеративные печи удовлетворяют требованиям промышленного производства. Однако экономическая целесообразность значительно снижается из-за таких недостатков, как быстрый спад температуры реакции в ходе процесса пиролиза, приводящий к падению глубины конверсии и изменению состава продуктов в течение цикла. Для обеспечения непрерывной работы остальной аппаратуры и получения пирогаза постоянного качественного состава на установке приходится иметь несколько регенеративных печей. [c.77]

    Регенеративные водоподогреватели используются в мощных электростанциях для того, чтобы повысить к. п. д. цикла и уменьшить размеры основного конденсатора. Второе обстоятельство гораздо важнее, чем это может показаться с первого взгляда, потому что размеры конденсаторов для мощных турбин становятся настолько большими, что появляются серьезные трудности при их монтаже. В этом аспекте отвод трети пара в подогреватели весьма выгоден. [c.257]

    Цикл с однократным дросселированием или простой регенеративный цикл [c.419]

    Таким образом, холодопроизводительность простого регенеративного цикла равна изотермическому эффекту дросселирования. С учетом суммарных потерь, обозначенных 2 , получим действительный коэффициент сжижения  [c.420]

    Другой метод нагрева до высокой температуры и подвода извне необходимого для реакции тепла состоит в использовании регенеративных печей с твердыми теплоносителями из огнеупорных материалов. Сначала твердый движущийся теплоноситель нагревают до 1200—1300° топочными газами, затем он под действием силы тяжести спускается в зону реакции, где отдает аккумулированное тепло нефтяному сырью (газообразным парафинам или парам жидких нефтепродуктов), вызывая его пиролиз. Отдав свое тепло, твердый теплоноситель поднимается газлифтом в зону нагрева и цикл повторяется. Этот метод использован в пиролитическом процессе термофор [22] и в регенеративном нагревателе Филлипса (см. [23]). [c.119]

    Вначале процесс Вульфа проводили при температуре выше 1100° с продолжительностью пребывания газов в зоне нагрева менее 1 сек. Чтобы снизить парциальное давление углеводорода, его разбавляли водяным паром. Пиролиз метана протекает при 1500°, но углеводороды с большим молекулярным весом можно подвергать разложению при температуре около 1200°. В лаборатории использовали трубки из карборунда, но на опытной установке процесс проводили в регенеративной печи, сложенной из карборундовых кирпичей. Рабочий цикл такой печи продолжался 4,5 мин. 3 мин. длились нагрев и продувка, а 1,5 мин. — пиролиз. [c.273]

    Рнс. ХУП-12. Регенеративный цикл высокого давления с однократным дросселированием  [c.666]

    Испарители могут быть включены в тепловую схему ТЭС грею-дций пар к испарителю подводят из отборов турбины, конденсат этого пара возвращают в цикл регенеративных ПНД, а образовавшийся вторичный пар направляют в систему регенерации для конденсации и лодают в деаэраторы или поток основного конденсата. Обычно в регенеративной схеме турбины устанавливают по два испарителя, к которым пар подается от двух отборов. Наряду с двухступенчатыми испарительными установками применяют и многоступенчатые. Такие [c.32]

    Для предотв ращения попадания воздуха в систему в промышленной установке давление в испарителе этилена и пропана принимается обычно равным 1,5—1,6 ата. В связи с наличием температурных разностей в испарителе этилена давление конденсации метана будет близким к критическому, что соответствует наименее экономичному режиму процесса сжижения. Снижение этих энергозатрат может быть достигнуто при переходе на режимы сжижения метана при давлениях 60—65 ата. Цри опытном исследовании было установлено, что применение пропана в качестве агента первого каскада с использованием в цикле регенеративного теплообменника энергетически целесообразнее, чем аммиака, для получения температур ниже —40°. [c.55]


    В дальпей пем для сменно-циклических процессов ста.пи применять реакторы регенеративного типа, в которых сам катализатор аккумулирует тепло от в]>1жига кокса и отдает его реакционной смеси во время цикла реакции, т. е. используется в качестве тепло-носнтеля. Реакторы такого типа находят применение для более длинных циклов, нанример в процессе дегидрирования бутиленов. [c.282]

    Процесс Вульфа для получения ацетилена состоит в пиролизе природного газа или пропана нри температуре 1200—1400° и низком парциальном давлении в печах, работающих по регенеративному циклу с периодами пиролиза и нагрева. Процесс Вульфа наиболее применим там, где имеется много дешевого углеводородного сырья, а смесь окиси углерода и водорода, получающаяся нри пиролизе по методу Захсе, не нашла бы применения. [c.96]

    В последнее время предпринимались попытки использовать установки мгновенного вскипания в схемах термического обезвреживания соленых стоков и, в частности, для создания бессточных ТЭС. Известно, что в большинстве случаев проще очистить стоки для их повторного использования, чем до норм сброса, которые систематически ужесточаются. На УралТЭПе выполнен проект очистных сооружений хвостовых вод установки для обессоливания добавочной воды Кармановской ГР . Производительность установки составляет 400 т/ч с солесодержанием исходной воды 300 мг/л. Установка [35] состоит из двух работающих и одного резервного аппаратов производительностью 50 т/ч каждый (конструкции Сверд-ловскНИИхиммаша), работающих по методу мгновенного испарения. Солесодержание обрабатываемых стоков колеблется от 6 до 12 г/л. Жесткость воды на входе в выпарные аппараты не превышает 1 мг экв/л, для чего применяется известково-содовое умягчение. Для восстановления извести из шлама используется регенеративная печь длиной 46 ми диаметром 2 м. В выпарных аппаратах получают 90 т/ч воды, которая после дополнительной очистки используется в цикле энергоблоков. Для хранения сухой соли предусмотрен закрытый склад. [c.37]

    Инертная насадка, расположенная по торцам слоев катализатора, выполняет роль регенеративных теплообменников. При увеличении высоты слоя инертной насадки Я увеличиваются общая поверхность обмена и тепловая емкость слоя в целом. Это увеличивает степень утилизации тепла и возможную длительность цикла. Численный анализ влияния Яв на различные показатели процесса позволил определить, что, во всяком случае для рассматриваемого примера, время цикла с возрастает практически линейно с увеличением Яи. По аналогичной зависимости увеличивается гидравлическое сопротивление реактора. Величина Гтах при этом нрактическн не изменяется. [c.205]

    Регенеративный реактор для термического крекинга метана. Такой реактор действует адиабатически в одном цикле из четырех фаз. Реактор заполнен керамической массой, которая попеременно нагревается и охлаждается метаном, который эндотермически крекируется в ацетилен. Между этими основными фазами находятся фазы удаления и очистки, таким образом, полный цикл будет следующим нагревание — удаление горючих газов — реакция — удаление реакционных газов. [c.109]

    Основными способами (циклами) являются 1) простой регенеративный цикл с изоэнталышческим расширением сжатого газа, 2) регенеративный цикл с изоэнтальпическим расширением и предвари- [c.220]

Рис. 9-19. Регенеративный цикл с изоэнтальпическим расширением и предва-рительпы. [ охлая дением газа Рис. 9-19. <a href="/info/739094">Регенеративный цикл</a> с <a href="/info/1446373">изоэнтальпическим</a> расширением и предва-рительпы. [ охлая дением газа
    Регенеративный цикл Капицы с изоэнтропическим расширением газа особенно эффективен в тех случаях, когда в результате разделения газовой смеси доляшы бып, получены газообразные [c.227]

Рис. 9-21. Регенеративный цикл Капшцл с изоэнтропическим расширением газа в — турбокомпрессор б — холодильник компрессора в—теплообменник г — турбодетандер, б — ожижитель е — дрбсселирующий вентиль м — сборник ожиженного газа. Рис. 9-21. <a href="/info/739094">Регенеративный цикл</a> Капшцл с <a href="/info/617906">изоэнтропическим расширением газа</a> в — турбокомпрессор б — <a href="/info/844449">холодильник компрессора</a> в—теплообменник г — турбодетандер, б — ожижитель е — дрбсселирующий вентиль м — сборник ожиженного газа.
    Изолирующие противогазы. В химической промышленности применяют изолирующие противогазы РВЛ-1, КИП-7, КИП-8, Принцип их действия показан на примере работы противогаза КИП-8 (рис. 9). Кислород, необходимый для дыхания, подается под маску через клапанную коробку 2 пз дыхательного мешка 3. в который ои поступает из баллона 5 через блок легочного автомата 6. Выделяемые при дыхании диоксид углерода и пары воды поглощаются специальными сорбентами, по.мещеннымп в регенеративном патроне 4. Устройство звукового сигнала предупреждает об уменьшении подачи кислорода. Таким образом, в кислородных противогазах осуществляется замкнутый цикл дыхания, полностью изолированный от внешней среды. [c.164]

    Более совершенной формой процесса, ири которой используется неподвижный теплоноситель, является пиролиз в регенеративных печах . Печь имеет огнеупорную насадку. При разогреве системы в середину печи подают топливо воздух подводят слева проходя через огнеупорную насадку, разогретую предыдущей стадией цикла, воздух нагревается до 800—1000° С в зоне горения температура достигает 1650°,С. По окончании разогрева, который продолжается всего 30 сек, насадку продувают водяным паром для удаления продуктов сгорания и в правый конец печи начинают подавать сырье продукты пиролиза выходят из левой зоны печи, охлаждаясь при этом примерио до 400—450° С и оставляя тепло иасадке, которая затем передает это тепло воздуху. [c.133]

    Оказалось, что все эти затруднения можно преодолеть, если работать в вакууме (под давлением около 0,5 ата), продолжая производить разбавление водяным паром, чтобы парциальное давление углеводорода было очень низким [2]. Водяной пар добавляли в количестве 5 молей на 1 моль углеводорода, а поэтому парциальное давление последнего было меньше 0,1 ата. В настояш,ее время печи Вульфа работают с четырехтактным циклом первые два такта состоят из пиролиза и нагрева потока газов, двигающегося в одном направлении, и вторые два такта — из пиролиза и нагрева газа, двигающегося в противоположном направлении. Продолжительность каждого такта равна 1 мин. Непрерывность процесса достигается за счет установки печей Вульфа попарно. Чтобы свести к минимуму разложение ацетилена, время пребывания газов в зоне реакции снижено до 0,03 сек. Кладка регенеративных печей выполнена из алундовых кирпичей (99% AljOj). В табл. 58 приведены результаты, полученные при пиролизе в ацетилен природного газа (95% метана), этана и пропана. [c.274]

    Цикл с однократным дросселированием и предварительным аммиачным охлаждением. Этот цикл отличается от предыдущего (см. рис. ХУИ-12) тем, что регенеративный теплообменник 111 здесь заменен двумя теплообменниками — предварительным регенеративным теплообменником III (рис. ХУ11-13, а) и главным регенеративным теплообменником V между ними установлен дополнительный холодильник IV, ъ котором охлаждение газа перед дросселированием производится аммиаком. [c.667]


Смотреть страницы где упоминается термин Цикл регенеративный: [c.61]    [c.184]    [c.185]    [c.166]    [c.134]    [c.495]    [c.169]    [c.253]    [c.221]    [c.64]    [c.117]    [c.180]    [c.4]    [c.666]    [c.666]   
Холодильная техника Кн. 1 (1960) -- [ c.30 , c.37 ]




ПОИСК





Смотрите так же термины и статьи:

Регенеративный газ



© 2024 chem21.info Реклама на сайте