Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Утилизация тепла

Рис. 80. Схема утилизации тепла дымовых газов печей шатрового типа Рис. 80. Схема <a href="/info/1007127">утилизации тепла дымовых газов</a> <a href="/info/922872">печей шатрового</a> типа

    В блоке вторичной перегонки бензина получаются фракции н. к. — 62, 62—85, 85—120 и 120—140 °С. В вакуумной колонне подвергается фракционированию поступающий из основной ректификационной колонны мазут, предварительно подогретый в печи до 420 °С. Нижний продукт вакуумной колонны — гудрон — нагревается в печи до 475 °С при этом происходит частичный его крекинг. Затем он поступает в камеру-испаритель, где поддерживается абсолютное давление 5 кгс/см и температура 435 °С. Жидкая фаза с низа испарителя после охлаждения в теплообменниках блока утилизации смешивается с компонентом котельного топлива каталитического крекинга и выводится с установки. Паровая фаза камеры испарителя направляется во фракционирующую колонну, которая работает при абсолютном давлении 4,5 кгс/см , температуре низа 370 и верха 157 °С. Часть гудрона выводится для производства дорожного битума. Некоторое количество верхнего продукта фракционирующей колонны после конденсации используется в качестве сырья для каталитического крекинга. Фракция дизельного топлива из основной ректификационной колонны поступает в отпарную колонну. Выходящее с низа отпарной колонны дизельное топливо после охлаждения до 90 °С в блоке утилизации тепла направляется на защелачивание совместно с дизельным топливом каталитического крекинга. [c.144]

    ОГНЕВЫЕ ПОДОГРЕВАТЕЛИ И ТЕПЛООБМЕННЫЕ АППАРАТЫ ДЛЯ УТИЛИЗАЦИИ ТЕПЛА [c.166]

Рис. 30. Схема окисления в колонне с утилизацией тепла Рис. 30. <a href="/info/62839">Схема окисления</a> в колонне с утилизацией тепла
    Т а б л и ц а 43. Утилизация тепла дымовых газов печей установки ЭЛОУ-АВТ производительностью 3 млн. т/год сернистой нефти [c.219]

    Степень нспользования тепловых ВЭР составляет в среднем менее 50% потенциала. Оборудование для утилизации тепла отходящих дымовых газов подвергается сильной сероводородной коррозии, так как основное топливо в печах — мазут с содержанием серы 2—2,5%. За рубежом используют регенеративные вращающиеся воздухоподогреватели, способные работать в условиях сероводородной коррозии. Опыт эксплуатации такого воздухоподогревателя в СССР на установке Л-35-11/600 показал, что в результате утилизации тепловых ВЭР можно экономить 6 тыс. т у. т. [c.169]


    Схема комбинирования процессов подготовки нефти на ЭЛОУ с установкой АТ показана на рис. 52. Сырая нефть перед электродегидраторами 3 нагревается в теплообменнике 2 за счет горячих потоков блока атмосферной перегонки. Обессоленная нефть перед поступлением в первую ректификационную колонну дополнительно нагревается в теплообменнике 5 за счет утилизации тепла горячих нефтепродуктов. [c.142]

    Благодаря утилизации тепла горячих нефтепродуктов значительно уменьшается расход охлаждающей воды. Если бы все это тепло снималось в аппаратах водяного охлаждения, потребовались бы холодильные аппараты со следующей общей поверхностью  [c.215]

    Расход воды снижается при повторно-последовательном использовании охлаждающей воды как на отдельных технологических установках, так и на смежных установках и некоторых объектах общезаводского хозяйства. Особенно эффективно оно в случае предварительной стабилизации свежей и оборотной воды против выпадения и разложения солей жесткости или специальной химической водоочистке свежей воды. Воду при этом можно нагревать до более высоких температур, так как накипь на трубах не образуется, а перед поступлением на градирню предварительно охлаждать с утилизацией тепла для отопления помещений, теплиц или производства холода. При такой схеме расход воды уменьшается в несколько раз. [c.81]

    Регенерация катализатора проводится в двухступенчатом регенераторе 5. Двухступенчатая конструкция регенератора позволяет снизить температуру регенерации катализатора при выжиге кокса. Большая часть кокса выгорает в первой ступени регенератора. После этого частично регенерированный катализатор самотеком поступает во вторую ступень, где происходит дожиг остаточного кокса. Дымовые газы второй ступени выводятся из регенератора через его первую ступень, что позволяет более эффективно использовать кислород, подаваемый на регенерацию катализатора. Дополнительное регулирование температуры достигается также за счет использования холодильника катализатора в плотной фазе 6. В схеме имеется устройство для утилизации тепла дымовых газов. [c.9]

    Для крекинга остатков с высоким содержанием асфальтенов используется холодильник катализатора з плотной фазе. Предусмотрена система утилизации тепла и давления дымовых газов регенерации. [c.12]

    На зарубежных битумных установках энергетические затраты составляют около 20 кг у. т. на 1 т битума [76, 186]. Такой низкий расход достигается утилизацией тепла реакции окисления (тепло откачиваемого из колонны битума используется для выработки водяного пара [76] или нагрева сырья [15]), более широким использованием насосов с электроприводом и применением более тяжелого сырья (на окисление которого расходуется меньше сжатого воздуха). Опыт Новоуфимского и Полоцкого НПЗ, на которых расход энергии на производство 1 т битумов составляет соответственно 22 и 26 кг у. т., показывает реальность существенного сокращения энергопотребления на битумных установках отрасли. На этих заводах для окисления используют колонны и кубы на постаменте (слив самотеком), сырье подают с необходимой температурой с АВТ, вовлекают в сырье асфальты в количествах, позволяющих выдержать требования стандарта. [c.124]

    В состав комбинированной установки Г43-107 входят блоки гидроочистки вакуумного дистиллята, каталитического крекинга гидроочищенного сырья и ректификации, стабилизации бензина и газофракционирования, утилизации тепла дымовых газов и очистки дымовых газов регенерации. [c.23]

    Практически на ГМК можно использовать две системы ВТО разомкнутую и замкнутую. Их достоинством является возможность некоторой утилизации тепла, отводимого от охлаждаемых агрегатов ПГПА. [c.225]

    К рассмотренной группе аппаратов относится также аппаратура, предназначенная для утилизации тепла и подогрева реагентов котлы-утилизаторы, электроподогреватели, трубчатые печи. [c.193]

    Более перспективным представляется использование для обогрева трубопроводов жидкого теплоносителя. Такой обогрев позволяет регулировать температурный режим трубопроводов, а система теплоносителя в целом удобна для утилизации тепла процесса окисления сырья и процесса сжигания вредных газов. Кроме того, система теплоносителя одновременно может быть использована для обогрева резервуаров (обогрев теплоносителем описан ниже). [c.158]

    Остановимся более подробно а последнем решении. На рисунке приведена энерго-технологическая схейа установки первичной перегонки нефти [3], Схемой предусматривается генерация перегретого водяного пара давлением 16 МПа каскадное расширение перегретого пара в турбине с противодавлением 4,6 и. 0,4 МПа, что соотзетстзует темлературам конденсации 250, 200 и 150 °С использование водяного пара для предварительного подогрева нефти и на различных стадиях фракционирования. Окончательный нагрев нефти до 350—370 °С производится высокопотенциальным паром. Конденсат возвращается в цикл для повторного использования. Экономия энергии от применения знерготехнологических схем со-ставит около 30%, что даст снижение расхода топлива с 5 до 3,5% на нефть. Экономия достигается за счет высокого к.п.д. котлов по сравнению с печами, использования энергии при практически полной утилизации тепла и возможности лучшей оптимизации расхода энергии. [c.346]


    Чем ниже температура дымовых газов, отходящих из конвекционной камеры, тем больше тепла воспринято нагреваемым нефтепродуктом. Обычно принимают температуру дымовых газов по выходе из конвекционной камеры на 100—150° С выше температуры сырья, поступающего в печь. Но так как температура поступающего в печь сырья бывает достаточно высокой, примерно 160—200° С, а для некоторых процессов достигает 250—300° С, то для утилизации тепла дымовых газов устанавливают воздухоподогреватель (рекуператор), в котором подогревается воздух, идущий в топку печи. При наличии воздухоподогревателя и дымососа возможно охлаждение дымовых газов перед выпуском их в дымовую трубу до температуры 150° С. При естественной тяге эта температура не менее 250° С. [c.90]

    На рис. 80 показана схема утилизации тепла дымовых газов печей шатрового типа для подогрева воздуха, производства водяного пара и его перегрева. Такая схема, более эффективная по сравнению с другими схемами, обеспечивает максимальное использование тепловой энергии дымовых газов и одновременно способствует повышению к.п.д. печи. Вода из заводской линии через теплообменник 10 поступает в паросборник 9. Насосом 8 нагретая вода направляется в котел-утилизатор 5, расположенный в борове. Оттуда пароконденсатная смесь поступает в паросборник 9. Насыщенный пар с верха паросборника 9 направляется в пароперегреватель 2, расположенный в конвекционной камере печи. Атмосферный воздух забирается вентилятором 4 и направляется через калориферы 6 в рекуператор 5. [c.219]

    Обычно прокаливание кокса в промышленных условиях проводят в токе горячих дымовых газов. Процесс включает следующие технологические стадии дробление и рассев, сушку, карбонизацию (удаление летучих веществ) и охлаждение прокаленного кокса. В отработанных дымовых газах содержатся летучие вещества, коксовая пыль, поэтому следует предусматривать стадии пылеулавливания, дожига горючих компонентов и утилизации тепла. [c.191]

    Температура отходящих дымовых газов в пределах 750— 850°С, имея в виду, что при низкой температуре будет происходить осмоление дымового тракта, а при высокой — повышение потерь кокса в виде уноса пыли и угара, снижение производительности печи по сырью, тепловая перегрузка системы пылеулавливания и утилизации тепла отходящих дымовых газов. [c.196]

    При утилизации тепла ХТП для получения пара давлением меньше давления теплоносителя следует учитывать, что проникновение взрывоопасного и агрессивного теплоносителя в пар при разгерметизации разделительной стенки теплообменника может быть опасным. Поэтому следует контролировать присутствие взрывоопасного и агрессивного теплоносителя в паре, а при выдаче избыточного пара посторонним потребителям предусматривать блокировку подачи и сброса пара в атмосферу. [c.107]

    Для предотвращения выгорания катализатора (платина или рений) максимальную температуру процесса каталитического сжигания ограничивают 815 °С. Каталитическое сжигание применяют для отходящих газов, содержание углеводородов в которых на 25% ниже минимального взрывоопасного предела. Если теплота сгорания газов достаточна для достижения температур, приводящих к выгоранию катализатора, их разбавляют атмосферным воздухом. Однако обычно отходящий газ содержит значительно меньше горючих материалов, чем требуется для поддержания устойчивого горения, и поэтому его предварительно нагревают до температуры проведения каталитической реакции. При использовании систем каталитического сжигания часто получают чистый нагретый газ, который затем можно использовать в установках утилизации тепла отходящих газов, значи- [c.143]

    В качестве восстановителя вместо природного газа применяется также обогащенный газ. Преимущество данного метода заключается в том, что аммиак в основном расходуется на восстановление оксидов азота и лишь частично — на взаимодействие с кислородом. Процесс протекает при относительно низких температурах (200—360 °С) с выделением небольшого количества тепла. Поэтому не требуется затрат на устройство для утилизации тепла реакций. Наличие кислорода при любом его содержании в отходящих газах не является препятствием для проведения процесса. На основании термодинамических, кинетических и технологических исследований определены основные закономерности процесса. [c.217]

    Тепло экзотермической реакции окисления можно утилизировать, сочетая охлаждение продукта с нагревом сырья. С этой целью используют теплообменники типа труба в трубе (поверхность теплообмена примерно 150 м ) для более полной утилизации тепла и облегчения чистки теплообменника по трубному пространству следует направлять битум, а по межтруб-ному — гудрон. Для предупреждения разгерметизации необходимо предусматривать теплокомпенсаторы. [c.141]

    Установки утилизации тепла. Большая эффективность теплообменных процессов может быть достигнута за счет использования отходящего тепла компрессорных станций. При комбинированном применении детандеров и подогревателей, работающих на отходящем тепле компрессоров, достигается реальная экономия в потреблении чистой энергии. [c.166]

    На рис. 111 показана обвязка холодильного оборудования установки, где газовая турбина используется для привода центробежного пропанового компрессора и центробежного генератора в тандеме. Благодаря этому на установке производится все необходимое для ее эксплуатации количество холода, электроэнергии и воздуха для системы контрольно-измерительных приборов и автоматического управления. Утилизация тепла турбин позволяет получить практически всю энергию, необходимую [c.190]

    Процесс фирмы Мобил-Баджер осуществляется при температуре выше 270 °С (катализатор стабилен до 565°С), давлении около 2 МПа, соотношении бензол этилен 6—7 1, объемной скорости 3 ч селективность по этилену 99% (рис. 61). Блок алкилнрования может состоять из двух и более реакторов, работающих в режиме алкилирование — регенерация. Регенерацию проводят в азотно-воздушной среде для исключения излишнего подъема температуры. Остаток из колонны выделения диэтилбензола вместе с отходящими газами может обеспечить 607о потребности установки в топливе. Кроме того, 95% тепла, затрачиваемого на проведение процесса, регенерируется в виде пара. Этот процесс позволяет использовать низкоконцентриро-ванпую этиленовую фракцию, обеспечивает повышенный выход целевого продукта. Для него характерны низкая энергоемкость, обусловленная высокой степенью утилизации тепла, отсутствие коррозии и вредных выбросов в атмосферу. [c.173]

    Закоксованный катализатор из отпарной секции реактора поступает в верхнюю зону разреженной фазы регенератора. В згой зоне уходящие дымовые газы передают тепло отработанному катализатору, который после контакта с газами поступает в псевдоожиженный слой катализатора, где и происходит Быжиг кокса. Такой метод утилизации тепла предотвращает перегрев линий отходящего газа, снижает энергетические затраты. Процесс флексикрекинга предусматривает установку скубберов или электрофильтров для ограничения выбросов механических взвесей. [c.17]

    Регенераторный блок установок каталитического крекинга включает регенератор, катализаторопроводы подвода закоксованного катализатора и вывода регенерированного катализатора, воздухоподогреватель, выносные холодильники катализатора и (или) пароводяные холодильники для снятия избытка тепла из зоны регенерации катализатора, электрофильтры для улавливания катализаторной пыли, компрессоры (воздуходу-ховки) для подачи воздуха, систему утилизации тепла и давления уходящих дымовых газов. [c.41]

    В ряде случаев битум откачивают из колонны через уравнительную емкость, наличие которой облегчает поддержание постоянства откачиваемого потока, что важно для обеспечения работы системы утилизации тепла битума (рис. 30). Во избежание перегрева колонны в результате выделения теплоты реакции окисления в газовое пространство подают воду, которая, испаряясь, понижает температуру в колонне и разбавляет газы окисления. Если такого разбавления недостаточно для снижения концентрации кислорода до безопасной, в колонну вводят также водяной пар, вырабатываемый в парогенераторе за счет избыточного тепла сырья и продукта [76]. Для поддержания теплового равновесия процесса применяют также циркуляцию части битума через выносные холодильники [75]. Такой прием используют на недавно введенной в эксплуатацию битумной установке Павлодарского НПЗ. Здесь при пройзвод- [c.56]

    Утилизация вторичных энергетических ресурсов расширяет топливную и энергетическую базу химических производств и обеспечивает снижение затрат на выработку их продукции. Например, утилизация тепла реакций сжигания 1<юлчедана обеспечивает снижение себестоимости серной кислоты на 20—25%. [c.305]

    Типовой печной агрегат производства этилена ЭП-300 (рис. 1-8) производительностью 20 т/ч по сырью (бензин, этап) состоит из двух самостоятельных печей с отдельными камерами радиации и конвекции. Кахсдая печь имеет свою систему утилизации тепла пирогаза и дымовых газов, состоящую из экономайзера (водоподогревателя), отдельного барабана пара, двух закалочно-испарительных аппаратов и одной общей дымовой трубы. [c.20]

    Для утилизации тепла тоиочных газоз, которые на выходе из печн имеют температуру ниже 500 °С, рекомендуется применять воздухоподогреватели. [c.115]

    Благодаря регенерации тепла горячих потоков тепловая нагрузка печей уменьшается на 20—25%. Более эффективное использование тепла горячих потоков достигается при совмещении процессов, например электрообессоливания и атмосферно-вакуумной перегонки на установках ЭЛОУ—АВТ (рис. 1.49), Для нагрева нефти перед электродегидраторами необходимо затратить много тепловой энергии. Так, на установке производительностью 3 млн. т в год нефти для электрообессолива-ння при 115°С требуется 21,9 млн. Вт тепла, а в случае обес-соливапня при 180 °С — 40,8 млн. Вт. На установке ЭЛОУ— АВТ производительностью 3 млн. т в год нефти от горячих нефтепродуктов в теплообменниках снимается около 71,1 млн. Вт (согласно проектным данным). При оптимальных теплообменных схемах температура нагрева нефти достигает 250 °С и выше. Благодаря утилизации тепла горячих нефтепродуктов значительно уменьшается расход охлаждающей воды. [c.139]

    На установке используется следующее энергетическое оборудование газовая турбина мощностью 9300 л, с. одноосная одноцикловая (запускается в работу посредством расширетшя газа через турбину мощностью 1200 л. с.) установка утилизации тепла производительностью 15 311 520 ккал/ч (это тепло используется для подогрева 238 117 кг масла в 1 ч со 182,2 до 287,8° С). [c.192]

    На рис. 3.8 показана принципиальная схема установки прокаливания, снабженной барабанной печью. Установка включает блоки прокаливания и охлаждения кокса, пылеулавливания и утилизации тепла и склад готового продукта. На установке предусмотрены полный дожиг пыли и летучих веществ, утилизация тепла с получением водяного пара. Важным элементом технологической схемы установки является предварительный подогрев воздуха до 400—450 °С, позволяющий уменьшить потери кокса от угара. Этому также способствует предварительная сушка или обезвоживание исходного сырья. Подготовленный к прокаливанию кокс из сырьевого бункера с помощью ковшового элеватора подают в загрузочный бункер 4, откуда кокс самотеком через дозатор 5 ссыпается в прокалочную печь 3 барабанного типа навстречу потоку горячих дымовых газов. Дымовые газы образуются за счет подачи в печь жидкого либо газообразного топлива и воздуха. Из печи газовый поток, несущий в себе недогоревшие летучие вещества и коксовую пыль, сразу поступает в иылеосадительную камеру 7, а далее проходит котел-утилизатор 5 и с помощью дымососа 9 подается в [c.192]

    Температурное приближение (разность температур теплоносителя и нафевае-мого агента на выходе) 10" Полная утилизация тепла [c.55]

    Теплотехническая — разрабатывает тепловые сети, сооружения и оборудование на них блоки утилизации тепла блоки химводоочистки пароприводы, сооружения и оборудование на них. [c.10]

    Пиролизные установки. Нормальный процесс сжигания требует 40—100%-ного избытка воздуха по отношению к стехиометрическому количеству. Пиролиз — процесс, проводимый без доступа воздуха с применением косвенного нагрева подобно процессам крекинга. Однако пиролиз часто проводят при значительно меньшей подаче воздуха, чем стзхиометрическое соотношение, требуемое для сжигания. При пиролизе отходы органических материалов дистиллируются или испаряются, образующийся горячий газ удаляется из печи. Тепло для проведения процесса обеспечивается за счет частичного сгорания пиролизного газа внутри печи, а также сгорания элементарного углерода. Неокисленную часть горючего газа можно использовать в качестве топлива во внешней камере сгорания и получать энергию по известной технологии утилизация тепла в котлах-утилизаторах. Содержание несгоревших материалов в шлаках процесса пиролиза выше, чем в шлаках нормального процесса сжигания. [c.140]


Библиография для Утилизация тепла: [c.122]   
Смотреть страницы где упоминается термин Утилизация тепла: [c.167]    [c.253]    [c.117]    [c.201]    [c.38]    [c.378]    [c.10]    [c.84]    [c.266]    [c.412]   
Смотреть главы в:

Катализ в промышленности. Т.2 -> Утилизация тепла


Общая химическая технология (1977) -- [ c.205 ]

Производство серной кислоты (1968) -- [ c.112 , c.118 ]

Процессы и аппараты нефтеперерабатывающей и нефтехимической промышленности Издание 2 (1982) -- [ c.474 ]




ПОИСК





Смотрите так же термины и статьи:

Утилизация



© 2025 chem21.info Реклама на сайте