Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактериофаг генетический анализ

    Генетика человека и социология. Генетика человека, как и все другие науки, не эволюционировала в социологическом вакууме, следуя исключительно законам внутренней логики развития теории и эксперимента. Генетика человека-продукт научной деятельности социальной группы людей, подчиняющихся законам коллективной психологии. К сожалению, социологический анализ формирования научных коллективов, занимающихся генетикой человека, не ведется. Социологами активно изучалась другая группа ученых, тех, кто участвовал в создании молекулярной биологии и генетики и для изучения реализации генетической информации использовал бактериофаги Е.соИ [237]. Эти исследования показали, что на этапе формирования новой научной концепции между членами группы, разрабатывающими эту концепцию, устанавливаются тесные контакты. Обычные каналы обмена информацией, такие, как публикации в научных журналах и конгрессы, заменяются менее формальным общением по телефону, через препринты или при личных встречах. Внутри такой группы наиболее авторитетные личности становятся интеллектуальными лидерами и (или) организаторами. Внешние же контакты сведены до минимума. Когда пик научного переворота позади, связи внутри [c.15]


    Успехи генетического анализа у микроорганизмов, особенно у бактерий и бактериофагов, сыграли революционизирующую роль в методах изучения структуры и функций генетического материала. Организация геномов бактерий и пути, ведущие к их рекомбинации, оказались, на первый взгляд, совершенно отличными от того, к чему привыкли генетики, работавшие с эукариотами. У бактерий были открыты дополнительные (к хромосоме) генетические э.ле-менты плазмиды и эписомы. Некоторые эписомы существуют в свободной форме. Это бактериофаги, вся структура которых приспособлена к переносу генома между клетками. Другие плазмиды способны только к репликации в бактериальной клетке. Между этими крайними формами есть промежуточною варианты. Само существование таких дополнительных элементов генома поставило вопрос о возможности их использования для переноса генетического материала и не только между клетками бактерий. [c.224]

    Генетический анализ бактериофагов основан на совместном заражении клетки генетически различающимися частицами бактериофага. Полные фаговые геномы, проникая в клетку, экспрессируют заложенную в них информацию подобно гомологичным хромосомам, и таким образом становится возможным исследование взаимодействия аллелей и неаллельных генов. Если два темпе- [c.217]

    Генетический анализ бактериофагов сопряжен с рядом трудностей, определяемых особенностями их развития в клетке. Репликация геномов Т-четных фагов идет экспоненциально со временем генерации 2—3 мин. Вплоть до образования количества фаговой ДНК, эквивалентного 50 полным геномам, зрелые частицы фага в клетке не обнаруживаются. Затем из общего фонда синтезируемой ДНК фаговые геномы начинают расходоваться на образование зрелых частиц. При лизисе клетки в ней остается еще столько же ДНК, сколько включилось в головки фагов. [c.219]

    Бактериофаги, или, для краткости, фаги, оказались еще более удобной системой для генетических исследований. Два или даже больше фагов могут обмениваться фрагментами своих гомологичных геномов, порождая фаговое потомство с новыми генетическими свойствами (рис. 1.15). Фаговые геномы даже способны к обратимой интеграции с бактериальной хромосомой. При выщеплении из хромосомы фаг может включить в свой геном часть бактериального генома и, таким образом, стать носителем бактериальных генов. Анализ подобного обмена генетическим материалом показал, что даже такие примитивные организмы обладают упорядоченным геномом и индивидуальные гены могут составить генетическую карту. [c.27]

    Для того чтобы достичь максимального понимания генетической организации, генетики сосредоточили свое внимание на изучении сравнительно небольшого числа организмов, наиболее удобных для генетического анализа. Из эукариотических организмов в качестве объекта была выбрана плодовая мушка Drosophila melanogaster. Среди бактерий таким организмом послужила Е. соИ, а среди вирусов-бактериофаги Т2, Т4, лямбда и фХ174. Изучение этих геномов послужило парадигмой при изучении генетической организации других организмов. [c.128]


    Разработка методов генетического анализа промышленных бактериальных продуцентов начинается, как правило, с поиска трансдуцирующих бактериофагов. Трансдукция—ценный метод изучения генетического контроля разных признаков, в том числе и промышленно важных. Изучение применимости к промышленным бактериям другого классического метода генетического анализа прокариотов — генетической трансформации — также часто начинается с попыток обнаружить фагообразование после обработки бактерий выделенной ДНК бактериофага (трансфекция). [c.214]

    Их специфическая активность проявляется только при инфицировании клеток. Поэтому генетика бактериофагов связана с генетическими особенностями бактерий-хозяев. Признаки бактериофагов, доступные генетическому анализу, — это прежде всего скорость и полнота лизиса инфицированных клеток и круг бактерий-хозяев, поражаемых фагами. Широкое распространение в генетическом анализе бактериофагов получили мутанты с условным проявлением. Это мутанты, чувствительные к повышению и понижению температуры, — так называемые термочувствительные (ts) и холодочувствительные (es). Они нормально размножаются и ли-зируют клетки только при пермиссивной температуре (37°С). [c.217]

    Последовательное применение генетического анализа и рас-щрфровка первичной структуры генов вскрыли неожиданный факт перекрывания генов у некоторых вирусов. Так, у ряда РНК-содержащих бактериофагов Е. соИ (R17, f2, MS2, Q ) были известны всего три гена репликазы, белка оболочки и созревания вирусной частицы. Мутации каждого гена, например у фага MS2, некомплементарны между собой, но комплементарны мутациям остальных двух генов. После расшифровки полной нуклеотидной последовательности РНК этих фагов на ней были локализованы все три гена. Однако обнаружена и четвертая группа мутаций, блокирующих лизис зараженной клетки. Эти мутации образовали самостоятельную группу комплементации, т. е. на основе функционального критерия аллелизма они были отнесены к самостоятельному гену, для которого уже не оставалось места на РНК бактериофага. Тем не менее путем исследования белкового синтеза in vitro с использованием РНК фага в качестве и РНК было выявлено реальное существование белка L размером в 75 аминокислотных остатков, кодируемого этим новым геном. Локализовать его удалось благодаря тому, что один из мутантов по гену лизиса нес нонсенс UGA, идентифицированный по взаимодействию с соответствующими супрессорными тРНК. У этого мутанта была расшифрована первичная структура РНК. Оказалось, что UGA возник в результате замены С на U в кодоне GA (Apr). Таким образом была установлена фаза считывания триплетов в гене ли- [c.404]

    Впервые сайт-специфические белки, связывающиеся с ДНК, были обнаружены у бактерий. С помощью генетического анализа у этих микроорганизмов удалось доказать существование регуляторных белков, таких как репрессор 1ас-оперона, репрессор бактериофага лямбда и сго-белок. Эти белки были выделены при последовательном фракционировании клеточных экстрактов на хроматографических колонках, а специфически связывающие их участки ДНК определены методом футприн-тинга (см. разд. 4.6.6). Аналогичными методами были выделены и охарактеризованы пфвые сайт-специфические ДНК-связывающие белки у эукариот Т-антиген вируса ЗУ4о, фактор транскрипции ТРИМ и рецептор стероидного гормона. [c.103]

    К 1950 г. была обнаружена еще более заманчивая и многообещающая экспериментальная система для исследования связей между генами и функциями клетки. Обычная кишечная бактерия Es heri hia соИ (К соИ) имеет примитивные питательные потребности и делится каждые 20—60 мин (в зависимости от условий культивирования), давая в потомстве офомное число клеток (10 в 1 мл). У нее было обнаружено множество легко выявляемых генетически контролируемых физиологических признаков. Кроме того, использование мутантов, которые достаточно просто выделить и охарактеризовать, позволило идентифицировать гены, кодирующие специфические функции клетки. Таким образом был открыт путь для более формального генетического анализа и создания генетической карты единственной хромосомы Е. соН. Еще одним преимуществом Е. соН оказалось то, что эта бактерия является хозяном для нескольких вирусов (бактериофагов) (рис. 1.14), для которых в свою очередь характерно значительное генетическое разнообразие инфекционных свойств. [c.27]

    Векторные системы, способные интегрировать крупные вставки (>100 т. п. н.), имеют большую ценность при анализе сложных эукариотических геномов. Без таких векторов не обойтись, например, при картировании генома человека или при идентификации отдельных генов. В отличие от библиотек с небольшими вставками, в геномной библиотеке с крупными вставками скорее всего будет представлен весь генетический материал организма. Кроме того, в этом случае уменьшается число клонов, которые нужно поддерживать, и увеличивается вероятность того, что каждый из генов будет присутствовать в своем клоне. Для клонирования фрагментов ДНК размером от 100 до 300 т. п. н. был сконструирован низкокопийный плазмидный вектор на основе бактериофага Р1 — химерная конструкция, называемая искусственной хромосомой на основе фага Р1. Был создан также очень стабильный вектор, способный интегрировать вставки длиной от 150 до 300 т. п. н., на основе Р-плазмиды (F-фактора, или фактора фертильности) Е. соИ, которая представлена в клетке одной или двумя копиями, с селекционной системой la Z векторов pU . Эта конструк- [c.76]


    В заключение раздела, посвящеииого анализу последовательности нуклеиновых кислот, следует отметить, что новые методы обеспечили возможность полностью расшифровать строение ряда простейших геномов, к которым относятся бактериофаги < Х174 (5255 звеньев), С-4 (5577 звеньев), Т7 (39 936п.о.),>. (4 592 п. о.), некоторых других фагов и вируса обезьян 8У-40 (5226 л. о.), больших участков генома бактерий, животных, растений и т. п. Эта результаты заставили по-новому взглянуть на структуру и функцию генома и на его эволюцию. И тем не менее сегодня в середине 80-х годов расшифрована еще только очень незначительная часть генетической информации. Общая длина расшифрованных последовательностей составляет всего лишь несколько миллионов нуклеотидных звеньев, а это — только 0,001 длины генома человека. [c.330]

    У вирусов бактерий (бактериофагов) были получены мутации нескольких типов. Мутантный фаг, как правило, отличается от фага дикого тина спектром литического действия (круг возможных хозяев) или морфологией стерильных пятен. Недавно были обнаружены другие мутанты (так называемые условно летальные)-, отбор этих мутантов основан на их чувствительности к повышенной температуре (такие ts-мутанты способны расти, скажем, при 30, но не при 40°) или на их способности размножаться в клетках какого-то одного определенного типа и неспособности размножаться на близкородственных бактериальных штаммах. Мутанты этой последней группы называются ашЬег-мутантами или просто ат-мутантами. Было показано, что у фагов Т2 и Т4 как мутации ат, так и мутации ts локализованы в различных участках хромосомы. Известно, что эти участки контролируют синтез не только обычных фаговых белков, но и других белков, которые вырабатываются зараженной бактериальной клеткой и необходимы для синтеза компонентов фага, в особенности его ДНК. Анализ всех этих мутантов позволил построить детальные генетические карты для нескольких вирусов бактерий. [c.487]

    Физические и химические исследования бактериофага 2 показали, что его частица содержит одну одноцепочечную (некольцевую) молекулу РНК длиной около 3300 нуклеотидов. (Следовательно, РНК 2 несет примерно в два раза меньше генетической информации, чем РНК ВТМ.) Нуклеотидный состав РНК 12 следующий [А] = 0,23 [Г] = 0,26 [У] = = 0,26 и 1Ц] = 0,25. Белковая оболочка фага 2 представляет собой сферическую структуру из 180 одинаковых молекул белка, каждая из которых содержит 129 аминокислот. Анализ аминокислотной последовательности белка фага 12 и родственных ему фагов М52 (выделенного в Калифорнии) и 1г (выделенного в Германии) показал, что белок М52 отличается от белка 2.по 88.-й аминокислоте, белке фага 12 в этом мес е находится оста- [c.469]

    Исследование вирусов, особенно бактериальных, внесло огромный вклад в наше понимание генетических явлений. Быстрое размножение бактериофагов дает возможность за одни сутки производить скрещивания в потомстве двух последовательных поколений. Аналогичные скрещивания на дрозофиле требуют 3,5 недель, а на кукурузе-по меньшей мере года. Кроме того, огромная численность фаговых популяций, содержащихся в нескольких миллилитрах кyльtypaльнoй жидкости, дает возможность наблюдать очень редкие генетические события. Малый размер геномов многих фагов по сравнению с геномом бактерий, например Е. соН, позволяет идентифицировать все или по крайней мере большинство фаговых генов и весьма подробно представить себе генетическую организацию и регуляцию генома в целом. Геном фага фХ174 состоит всего из девяти генов, геном фага лямбда-менее чем из 60, тогда как геном Е. соН насчитывает, вероятно, несколько тысяч генов. Сочетание этих замечательных достоинств сделало вирусы незаменимыми генетическими объектами и привело к тому, что геномы некоторых бактериофагов изучены в настоящее время лучше, чем каких бы то ни было иных организмов. Они могут служить моделями при анализе строения и работы более сложных геномов. [c.190]

    Недавно генетическую вариабельность РНК вируса гриппа PR8 исследовали путем анализа более чем 200 клонов, приготовленных в дериватах бактериофага М13 [59]. Гетерогенность последовательности в клонированной ДНК была представлена одним нуклеотидным различием на 3700 нуклеотидов (ЗХ10 ), но основные ошибки, обусловленные ферментами репликации ДНК, необходимыми для изготовления кДНК, возможно, были столь велики, что затеняли естественную изменчивость в популяции РНК-содержащих вирусов [79, 156]. [c.190]

    В первые годы основными объектами генно-инженерных экспериментов были клетки Es heri hia соИ К-12, а также ее плазмиды и бактериофаги, так как именно они были наиболее полно изучены генетически. Это позволяло целенаправленно конструировать новые типы векторных молекул и реципиентных клеток, а также прогнозировать свойства рекомбинантных молекул ДНК и проводить их анализ. Но со временем были разработаны системы клонирования для различных промышленно важных микроорганизмов, а также для клеток растений и животных. В настоящее время можно получать растения и животных, содержащих в своем геноме любой избранный ген. Успех работы зависит только от суммы вложенных в нее средств. [c.11]


Смотреть страницы где упоминается термин Бактериофаг генетический анализ: [c.303]    [c.33]    [c.237]    [c.368]    [c.155]    [c.377]    [c.56]    [c.155]    [c.195]   
Биохимия Том 3 (1980) -- [ c.327 ]




ПОИСК







© 2025 chem21.info Реклама на сайте