Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Условия культивирования

    Химический состав клеточной стенки микроорганизмов различных групп неодинаков. Он изменяется и в зависимости от условий культивирования. Механически и химически клеточная стенка является очень прочным образованием. Она сохраняет форму клетки и поддерживает нужное осмотическое давление в ней, а также принимает участие в транспорте веществ. В отличие от цитоплазматической мембраны клеточная стенка проницаема для солей и других низкомолекулярных соединений. [c.15]


    Условия культивирования термофильных метановых бактерий на мелассной барде с целью получения витамина В12 изучены Институтом биохимии им. А. Н. Баха АН СССР, а технология кормового концентрата витамина создана УкрНИИСПом совместно с работниками предприятий, на которых были построены первые цехи. В настоящее время этот продукт вырабатывают Андрушевский и Калкунский спиртовые заводы. [c.389]

    Второе направление развития Б. связано с клеточной инженерией. Культура растит, клеток может служить прежде всего источником свойственных данному растению вторичных продуктов, напр, антиаритмич. алкалоида ай-малина из раувольфин змеиной. Пользуясь способностью клеток растений превращаться на спец. средах в сформированное растение, клеточные культуры применяют для получения оезвирусных растений, пытаются проводить селекцию форм с нужными св-вами. Животные клетки более требовательны к условиям культивирования, им необходимы дорогостоящие среды. Все более широкое применение находят т. наз. гибридомы, полученные в лаборатории путем слияния двух различных клеток и служащие источником белков, необходимых для диагностики и лечения болезней человека, животных и растений. [c.290]

    МЕТОДЫ И УСЛОВИЯ КУЛЬТИВИРОВАНИЯ ИЗОЛИРОВАННЫХ ТКАНЕЙ И КЛЕТОК РАСТЕНИЙ [c.160]

    Условия культивирования приведены выше разделе "Материалы и методы". [c.224]

    Совершенно очевидно, что один из наиболее перспективных методов крупномасштабного преобразования солнечной энергии основан на использовании биосистем. Широкое применение биосистем для получения энергии способно обеспечить свыше 15 % производства энергии для экономически развитых стран. В последние 10—15 лет намечены новые пути биотрансформации солнечной энергии при фотосинтезе. Установлено, что некоторые микробиологические системы характеризуются высокой эффективностью фотосинтеза. Так, фоторазложение воды, осуществляемое суспензией хлореллы с образованием кислорода, в оптимальных условиях культивирования дает 130—140 л газа с 1 м освещаемой поверхности в сутки. Известно, что одна из особенностей процесса фотосинтеза — уменьшение эффективности преобразования солнечной энергии при высоких значениях интенсивности света. Новые технологии позволяют повысить эффективность фотосинтеза при высокой интенсивности света. Разрабатываются системы, эффективно поглощающие световой поток и обогащенные реакционными центрами по отношению к пигменту. Световые кривые фотосинтеза улучшаются также с увеличением скорости лимитирующей стадии электронного транспорта. Например, проведение процесса при повышенных температурах в системах термофильных микроорганизмов увеличивает эффективность преобразования солнечной энергии при высокой интенсивности света. [c.26]


    Указанные недостатки устраняются при непрерывном культивировании, методы которого разработали С. В. Лебедев, А. А. Андреев, Н. Д. Иерусалимский и другие ученые. Из непрерывных процессов лучше всего разработан метод глубинной ферментации. В этом случае в ферментатор с культурой продуцента непрерывным потоком подается стерильная среда, а из него непрерывно вытекает готовая культуральная жидкость. Процесс может быть гомо- и гетерогенно непрерывным. При гомогенно непрерывном процессе в аппарате, где идет интенсивное перемешивание, все параметры (концентрация питательных веществ, клеточный титр и др.) постоянны во времени. При гетерогенно непрерывном процессе несколько ферментаторов соединены вместе и образуют каскад. Питательная среда поступает в первый ферментатор и готовая культуральная жидкость вытекает из последнего ферментатора. Культивирование микроорганизмов в протоке через систему трубок также идет по принципу гетерогенно непрерывного процесса ферментации. В этом случае имеет место непрерывный поток питательной среды, но клетки не обеспечены постоянными условиями роста (сколько аппаратов, столько и условий культивирования). [c.69]

    Липиды выделяют из биомассы экстракцией эфиром. Из 1 т сухого торфа можйо получить 40—50 кг липидов. По физико-химическим свойствам они близки к растительным маслам, которые используют во многих отраслях промышленности для технических нужд. Возможно отобрать такие культуры микроорганизмов и создать условия культивирования, чтобы в биомассе накапливалось меньше липидов (15—30%), но больше белков (30—40%). В этом случае после экстракции липидов получают ценный кормовой препарат — микробный жмых. [c.134]

    Промышленная ценность каучуконосов зависит от характера локализации каучука в растении, продуктивности каучуконоса, технических свойств получаемого каучука, сложности условий культивирования, стойкости растений против заболеваний и вредителей. В соответствии с этим наибольшую промышленную ценность имеет бразильская гевея. [c.20]

    Собственно крахмал составляет 70—80% от сухой массы клубней н 95—98% от массы углеводов. На содержание крахмала кроме сорта существенное влияние оказывают условия культивирования, а также размер клубней и их зрелость. [c.13]

    Образование антибиотиков регулируется условиями культивирования микроорганизмов. Поэтому оптимизация питательной среды является главным фактором в повышении выхода продукта. [c.68]

    Микроорганизмы способны синтезировать разнообразные ферменты. В зависимости от состава питательной среды и условий культивирования они легко переключаются с синтеза одного фермента на другой. У микроорганизмов сравнительно короткий цикл развития (10—100 ч), что позволяет получать сотни урожаев в год. [c.145]

    ОПТИМАЛЬНЫЕ УСЛОВИЯ КУЛЬТИВИРОВАНИЯ [c.52]

    В научно-исследовательских организациях постоянно проводится работа по улучшению эффективности производства ферментных препаратов, в основном по повышению активности зрелой культуры.. Это достигается не только селекцией штаммов микроорганизмов, но и совершенствованием условий культивирования, в том числе и изменением состава питательной среды, поэтому приведенные составы питательных сред могут подвергаться значительным изменениям при соответствующем корректировании аэрации и других условий культивирования. [c.160]

    О потребности дрожжей в питательных веществах судят по их химическому составу, который зависит от питательной среды, условий культивирования дрожжей и их физиологических особенностей. Средний элементарный состав дрожжевых клеток (в %) углерод 47, водород 6,5, кислород 31, азот 7,5—10, фосфор 1,6—3,5. Содержание других элементов незначительно кальция 0,3—0,8%, калия 1,5—2,5, магния 0,1—0,4, натрия 0,06—0,2, серы 0,2%. В дрожжах найдены микроэлементы (в мг/кг) железо 90—350, медь 20—135, цинк 100—160, молибден 15—65. [c.197]

    После 5 — 6 пересадок новый кариотип клеточной популяции, как правило, стабилизируется, если условия культивирования остаются постоянными. В противном случае изменение физических или трофических факторов приведет к новым генетическим изменениям. [c.171]

    Характерной особенностью процесса ассимиляции углеводородов в качестве источника углерода является часто встречающееся накопление промежуточных продуктов в культуральной среде микроорганизмов, растущих за счет таких субстратов. Эта особенность позволяет использовать процессы микробиологического окисления угле-видородоБ для получения некоторь х веществ, Концетращио накапливающегося соединения можно значительно повыснгь тем или иным способом, варьируя условия культивирования, применяя ингибиторы и так далее. Обоснованность такого подхода и достигнутые успехи позволяют рассчитывать на возможность промышленного использования этого свойства микробных культур. [c.85]


    Способность интактных растений синтезировать различные соединения привела к предположению, что тем же свойством будут обладать клетки и ткани этих растений, выращиваемые в стерильных условиях. Для некоторых культур это оказалось справедливым. Но в отдельных случаях клетки либо не проявляли способности к синтезу необходимых веществ, либо синтезировали их в минимальных количествах. Понадобились долгие эксперименты по подбору питательных сред, условий культивирования, исследованию новых штаммов, полученных благодаря генетической гетероген- [c.179]

    Содержание воды в клетках достигает 65—80%. В протоплазме на каждую молекулу белка приходится около 1800 молекул воды, причем состав ее в клетках непрерывно обновляется. В зависимости от условий культивирования содержание воды в клетках может меняться. Часть воды находится в межклеточном пространстве, это внеклеточная вода, а часть воды находится в самих клетках. В свою очередь находящаяся в клетках вода может быть в свободном и в связанном с поверхностью макромолекул виде. [c.23]

    Условия культивирования. У многих грибов и бактерий количественный и качественный состав каротиноидов изменяется при изменении условий культивирования. На количество и состав образующихся каротиноидов сильно влияют природа источников углерода и азота, отношение углерод/азот, доступность минеральных солей, витаминов и ростовых факторов, степень аэрации, pH среды и температура. [c.80]

    В специальных условиях культивирования при усиленной аэрации и увеличенном количестве посевного материала содержание эргостерина можно увеличить до 2,3—5% в пересчете на сухое вещество. [c.180]

    Это представление подтверждается существованием стволовых клеток, сохраняющих некоторые черты эмбриональных клеток при каждом делении стволовой клетки образуется новая стволовая клетка плюс дифференцированная клетка. Последнее явление трудно объяснить только как реакцию на химические сигналы из окружающей среды. Согласно некоторым наблюдениям, клетки животных обладают ограниченным потенциалом деления [176, 177]. Например, нормальные диплоидные фибробласты человеческого эмбриона при выращивании в культуре делятся примерно 50 10 раз, после чего погибают независимо от условий культивирования. Фибробласты, полученные от людей старшего возраста, погибают после меньшего числа клеточных деле яйй. АнаЛОгнтаым йбразом быс трее norti6atdlf в культуре клетки жи- [c.360]

    Депарафинизация нефтяных фракций проводится в водной среде с добавками питательных солей (при температуре 28 — 30 °С) в депарафинизаторе, где при соблюдении требуемых условий культивирования (pH, температура, аэрирование и др.) происходит окисление непрерывно поступающей нефтяной фракции. Выделение депарафинизата из стойкой эмульсионной смеси с микробной массой и водой проводится при помощи добавления "комплекса", представляющего собой 10 %-ный раствор кальцинированной соды (2 %) и аммиака (8 %), и отстаивания. [c.273]

    Исследованы условия культивирования обогащенной селеном биомассы бактерий Е oli М-17, содержащей ие менее 25 мг селена/кг, подобраны условия автолиза полученной биомассы с целью получения смеси низкомолекулярных пептидов и аминокислот. Подобраны условия мембранного концентрирования бактериальной суспензии. [c.221]

    Таким образом, в ходе выполнения работы были подобраны условия культивирования и автолиза обогащеной селеном биомассы бактерий Е. oliM-17, [c.226]

    В зависимости от способа, условий культивирования и происхождения можно выделить несколько типов культур клеток и тканей. Если культивирование происходит поверхностно на агаризо-ванной питательной среде, то образуется каллусная ткань. Она не имеет четко выраженной структуры, но может различаться по плотности. Происхождение и условия выращивания определят, будет ли каллусная ткань рыхлой, средней плотности или плотной. Рыхлая каллусная ткань имеет сильно оводненные клетки, легко распадается на небольшие группы клеток и кластеры и поэтому может быть использобана для получения суспензионной культуры. Ткань средней плотности характеризуется хорошо выраженными меристематическрши очагами. В ней легко инициируются процессы органогенеза. Наконец, у плотных каллусных тканей различают зоны редуцированного камбия и трахеидоподобных элементов  [c.166]

    С целью отимизации условий культивирования изучалась возможность использования мелассы как источника углерода, как в условиях принудительного аэрирования, так и без такового. По критерию активности роста меласса оказалась наиболее предпочтительным субстратом из всех ранее использовавшихся (этанол, глюкоза, сахароза). [c.132]

    В качестве объекта исследований мы выбрали биомассу бактерий Е.соИ М-17, R рабоге подобраны условия культивирования биомассы E. oli М-17 на сеяенсодержащей среде и состав питательной среды, в которой от 10 до 20 мольных % серы заменяли на селен, вносимый в виде 1%-го раствора SeOj. После [c.139]

    Выращивание товарных дрожжей. Дрожжи выращивают непре-рывно-проточньш способом, при оптимальном составе среды и благоприятных условиях культивирования лимитирующим фактором чаще является содержание растворенного в среде кислорода. Достаточной считается такая интенсивность аэрирования, при которой концентрация растворенного в среде кислорода равна критической или незначительно превышает ее. Скорость потребления дрожжами растворенного кислорода V до критической концентрации прямо пропорциональна его концентрации в среде при концентрации выше критической — остается постоянной (рис. [c.377]

    Таким образом, использование суспензионных культур для синтеза вторичных метаболитов в промышленных масштабах имеет большие перспективы, и не только с точки зрения экономической выгоды получения более дешевой продукции в запланированных количествах. Важно, что использование культуры клеток спасет от уничтожения тысячи дикорастуших растений, ставших уже редкими, которые синтезируют необходимые человеку вещества. Увеличение выхода продукта может бьггь достигнуто благодаря дальнейшей исследовательской работе по селекции специализированных популяций клеток и оптимизации условий культивирования. Большой интерес представляет также дальнейшее развитие методов биотрансформации метаболитов и иммобилизации культивируемых клеток. [c.184]

    Липидный состав клеточных мембран изменчив. В меньшей степени это проявляется в животных клетках, находящихся в условиях стабильной внутр. среды. Однако и в этом случае можно модифицировать состав липидов в нек-рых мембранах, меняя пнщ. рацион. Липидный состав мембран растений заметно измейяется в зависимости от освещенности, т-ры н pH. Еще более изменчив состав бактериальных мембран. Он варьирует не только в зависимости от штамма, но и в пределах одного и того же штамма, а также от условий культивирования и фазы роста. У вирусов, имеющих липопротеиновую оболочку, липидный состав мембран также не постоянен и определяется составом лршидов клетки-хозяина. [c.29]

    Непрерывный процесс проводят в каскаде ферментеров 4, каждый из которых отвечает за определенную стадию процесса - быстрое размножение культуры бактерий и наращивание биомассы, активное окисление спирта, замедление роста биомассы с накоплением продукта (автоингибирование), истощение популяции бактерий и их гибель. В соответствие со стадиями процесса в каждом ферментаторе поддерживаются заданные условия культивирования (концентрации спирта и кислоты, температура, степень аэрации). Подаваемый в ферментеры [c.428]

    Продуцентами витамина В,2 при его промышленном получении служат актиномицеты, метанообразующие и фотосинтезирующие бактерии, одноклеточные водоросли. В 70-х годах XX в. интерес ученых привлекли пропионовокислые бактерии, известные еще с 1906 г. и широко использующиеся для приготовления препаратов животноводства. Вьщелено 14 видов пропионовокислых бактерий, продуцирующих витамин В,2 их физиолого-биохими-ческая характеристика дана Л. И. Воробьевой. Для получения высокоочищенных препаратов витамина 6,2 пропионовокислые бактерии культивируют периодическим способом на средах, содержащих глюкозу, казеиновый гидролизат, витамины, неорганические соли, хлорид кобальта. Добавление в среду предшественника 5,6-диметилбензимидазола (способствует переводу неактив-. ных форм в природный продукт) по окончании первой ростовой фазы (5 — 6 суток) стимулирует быстрый (18 —24 ч) синтез витамина с выходом последнего 5,6 —8,7 мг/л. Путем селекции, оптимизации состава среды и условий культивирования выход витамина В)2 в промышленных условиях был значительно повышен. Так, выход витамина на среде с кукурузным экстрактом и глюкозой при поддержании стабильного значения pH близ нейтральных зон достигает 21 — 23 мг/л. Мутант пропионовокислых бактерий продуцирует до 30 мг/л витамина. Бактерии плохо переносят перемешивание. Применение уплотняющих агентов (агар, крахмал), предотвращающих оседание бактерий, а также использование высокоанаэробных условий и автоматического поддержания pH позволяет получить наиболее высокий выход витамина — 58 мг/л. [c.55]

    Не все из приведенных на этой схеме путей происходят в одном и том же организме, но каждый путь частично или полностью реализуется в зависимости от вида организма и условий культивирования. Например, стандартный штамм Peni illium urti ae можно культивировать так, что он в качестве основного вещества будет продуцировать или (6), или (31), или (34), или (43), или (13) (см. схему 10) [31,32]. Это объясняется тем, что генетически этот штамм способен выполнять весь ряд трансформации, но в реальных [c.430]

    Проницаемость клеток зависит и от условий культивирования. Установлено, что содержание биотина в питательной среде меняет проницаемость мембран. Это явление используют при получении глутаминовой кислоты, чтобы обеспечить выделение Этой синтезированной в клетке кислоты через мембрану в окружающую среду. [c.17]

    Под липидами в данном случае подразумеваются растворимые в неполярных растворителях клеточные компоненты микроорганизмов. Их концентрация составляет до 75% сухой биомассы. В состав липидов микроорганизмов входит сравнительно много ненасыщенных жирных кислот. Так, в липидах плесневого гриба Peni illium soppii из жирных кислот содержатся пальмитиновая — 22%, стеариновая — 7,6%, олеиновая — 45,2% и линолевая — 20% от общего их количества. Соотношение насыщенных и ненасыщенных кислот зависит не только от свойств продуцента, но и от условий культивирования. Низкая температура стимулирует синтез ненасыщенных жирных кислот у грибов. Общее количество и соотношение жирных кислот зависит и от присутствия К, Mg, Na и их соотношения в среде. [c.133]

    Микроорганизмы содержат много витаминов, которые чаще всего входят в состав ферментов. Состав и количество витаминов в биомассе. зависят от биологических свойств данной культуры микроорганизмов и условий культивирования. Некоторые витамины микроорганизмы синтезируют, другие напротив усваивают в готовом виде из окружающей среды. Культура, способная синтезировать какой-либо витамин, называется аутотрофной по отношению к нему, если культура не способна синтезировать данный витамин, она является аутогетеротрофной. [c.171]

    Однако -1-гидроксилирование и 0-метилирование могут происходить на более ранних стадиях десатурации у этих бактерий при определенных условиях культивирования были обнаружены гидрокси- и метоксипроизводные фитоина, фитофлуина и 1,2,7,8-тетрагидро- ф, ф-каротина. [c.69]

    Синтез феназинов бактериями в большой мере зависит от состава культуральной среды и от условий культивирования, однако детали контролирующих и регулирующих этот процесс механизмов остаются невыясненными. [c.245]


Смотреть страницы где упоминается термин Условия культивирования: [c.238]    [c.225]    [c.248]    [c.78]    [c.167]    [c.54]    [c.102]    [c.116]   
Смотреть главы в:

Вирусология Методы -> Условия культивирования




ПОИСК







© 2025 chem21.info Реклама на сайте