Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вирусы как антигены

    ЦИИ трансляции не проходит далее сквозь мембрану, а остается вставленным в мембрану как трансмембранный белок. Можно привести еще ряд аналогичных примеров интегральных мембранных белков, синтезируемых с отщепляемой N-концевой сигнальной последовательностью (гемагглютинин вируса гриппа, тяжелая цепь антигенов гистосовместимости А и В, гликофорин А красных кровяных клеток, цитохром Р-448 и т. д.). Получается, что в синтезе как секреторных, так и интегральных мембранных белков используется один и тот же механизм сигнального пептид-мембранного узнавания, вхождения растущего пептида в мембрану и затем отщепления N-концевого сигнального фрагмента, но терминация трансляции может приводить либо к прохождению конечного продукта сквозь мембрану в случае водорастворимых секреторных белков, либо к его солюбилизации в мембране в случае более гидрофобных белков, предназначенных для внутримембранной локализации. Белки, оставшиеся в мембране. эндоплазматического ретикулума, далее могут подвергаться посттрансляционному транспорту через секреторные пузырьки в мембранные структуры других типов, включая клеточную плазматическую мембрану. [c.281]


    Один метод локализации со специфической физиологической активностью был позаимствован нз ПЭМ. Этот метод меток поверхности клетки, который, будучи применен к образцам для РЭМ, приводит к образованию на поверхности клетки морфологически различаемых или аналитически идентифицируемых структур. Такие методики в сочетании с растровой электронной микроскопией высокого разрешения позволяют изучать природу, распределение и динамические свойства антигенных и рецепторных состояний на поверхности клеткн. Методы нанесения меток на поверхность клетки в общем случае достаточно сложны и включают процедуры иммунохимической и биохимической очистки. Подробные ссылки на них можно найти в работах [359—361], но сущность методик состоит в следующем. Для крепления антител в определенных антигенных состояниях на поверхности клетки используются стандартные иммунологические процедуры. Хитрость состоит в том, чтобы модифицировать антитела таким образом, чтобы они также несли морфологически различимую метку, такую, как латексные шарики или сферы из двуокиси кремния, распознаваемый вирус, как, например, вирус табачной мозаики, или один из Т-четных фагов, как показано на рис. 11.18, илн белковая молекула известных размеров, как ферритин или гемоцианин. В работе [362] (рис. 11.19) использовались гранулы золота, которые имеют большой коэффициент вторичной электронной эмиссии. Одна часть антитела имеет средство для специфичного антигенного закрепления на поверхности клетки, в то время как другая часть несет морфологически различимые структуры. В настоящее время иммунологические методы достигли такого уровня, когда они не могут быть использованы для изучения как качественных, так и количественных характеристик поверхности клетки [363, 364]. [c.244]

    По мере развития иммунологии оказалось, что для иммунизации часто нужен не целый вирус или болезнетворный микроб, а лишь его антигенная часть, способная вызвать образование антител. Такая часть является белком - субъединицей вируса или бактерии, содержащие ее вакцины называют субъединичными. Генная инженерия открыла простой путь получения таких вакцин. Из генома вируса выделяют ген белка с антигенной активностью, встраивают его в вектор и размножают этот белок в бактериальной клетке. Производство такого белка в отличие от получения вируса не только дешево, но и безопасно, сама вакцина также безопасна и не содержит ничего лишнего. [c.62]


    Антитела (иммуноглобулины) — группа белков, синтезируемых в ответ на попадание во внутреннюю среду организма молекул чужеродного вещества или вируса — антигенов (иммуногенов). [c.548]

    Защитная функция. Основную функцию защиты в организме выполняет иммунная система, которая обеспечивает синтез специфических защитных белков-антител в ответ на поступление в организм бактерий, токсинов, вирусов или чужеродных белков. Высокая специфичность взаимодействия антител с антигенами (чужеродными веществами) по типу белок-белковое взаимодействие способствует узнаванию и нейтрализации биологического действия антигенов. Защитная функция белков проявляется и в способности ряда белков плазмы крови, в частности фибриногена, к свертыванию. В результате свертывания фибриногена образуется сгусток крови, предохраняющий от потери крови при ранениях. [c.21]

    Чужие белки часто включаются в тело как часть болезнетворных агентов -вирусов, бактерий, грибков, паразитов. Химия тела так сильно зависит от наличия нужных белков в определенном месте, в определенное время и в нужном количестве, что при появлении чужого белка сразу вырабатывается сигнал для нейтрализации возможной опасности. Стратегия защиты организма иммунной системой заключается в синтезе белков, окружающих часть молекулы чужого белка. Опять биохимическое взаимодействие становится возможным из-за соответствия формы молекул антител и антигенов (свойство комплементарности). Если молекула захватчика будет окружена, она не сможет причинить вреда. [c.486]

    Человек, заразившийся оспой, может умереть в результате нарушений, которые вызывает вирус оспы, размножающийся в клетках организма. Если организм выживает, он приобретает против оспы иммунитет, который сохраняется до конца жизни, однако не защищает его от других вирусных заболеваний. Иммунитет обеспечивается специфическими белковыми молекулами — антителами, которые вырабатываются в организме в ответ на инъекцию определенных молекул. Молекулы (в случае оспы — вирусные частицы), стимулирующие образование антител в организме, называются антигенами. [c.447]

    В некоторых случаях в качестве живых вакцин можно использовать генетически модифицированные (рекомбинантные) микроорганизмы (бактерии или вирусы). Такие вакцины содержат либо непатогенные микроорганизмы, синтезирующие антигенные детерминанты определенного патогенного агента, либо штаммы патогенных микроорганизмов, у которых модифицированы или делетированы гены вирулентности. В этих случаях основные антигенные детерминанты являются составными компонентами бактериальных или вирусных частиц и имеют такую же конформацию, какую они принимают в болезнетворном микроорганизме. Изолированный же антиген часто утрачивает исходную конформацию и вызывает лишь слабый иммунный ответ. [c.234]

    Если бы все углеводные остатки гликофорина оказались равномерно распределенными на поверхности клетки, то они могли бы покрыть около 75 ее поверхности, образовав редкую сетку. В действительности же они распределены, ло-видимому, неравномерно и образуют выступающие из мембраны локальные скопления. Было показано, что углеводные выступы являются носителями антигенов групп крови М -типа (разд. В 1) и ряда других иммунологических детерминант. Они служат также рецепторами для вирусов гриппа и местами присоединения растительных агглютининов (разд В.З). [c.353]

    Они могут быть различной природы (бактерии, вирусы, нуклеиновые кислоты, липиды, полисахариды, белки и пр.). Для антигенов характерны два отличительных свойства иммуноген-ность и антигенная специфичность. [c.90]

    Белок содержит несколько разных антигенных детерминант. Некоторые белки могут иметь одну и ту же антигенную детерминанту в нескольких экземплярах (повторные антигенные детерминанты), как, например, в случае белка, состоящего из нескольких идентичных субъединиц. Число антигенных детерминант одного белка можно приблизительно установить по числу антител, которые способны связываться с молекулой антигену это число есть валентность данного антигена. Однако при стерическом несоответствии возможны и такие антитела, которые не в состоянии связываться с эпитопом антигена, и обычно валентность меньше числа антигенных детерминант [108]. В целом, как правило, для белков можно ожидать одну антигенную детерминанту на каждые 5000 Да молекулярной массы антигена [18]. На основании валентности, установленной для белковых антигенов с возрастающей молекулярной массой [108], можно подсчитать, что, по крайней мере, на одну антигенную детерминанту приходится 2500 Да молекулярной массы антител у рибонуклеазы, 3500 Да у белка вируса табачной мозаики, 8800 Да у овальбумина, [c.91]

    Гликопротеин 50 вируса псевдобешенства Гликопротеин вируса бешенства Антиген респираторно-синцитиального вируса [c.145]

    В качестве продуцента при производстве вакцин используют особые, адаптированные на специальных питательных средах культуры вирусов и бактерий. Работая с живыми вакцинами надо следить за тем, чтобы под воздействием мутагенных факторов культура не восстановила свою вирулентность или не потеряла свои антигенные свойства. Важно подобрать такую питательную среду, чтобы облегчить дальнейшую очистку препарата. В производстве вакцин широко используют среду, приготовленную из гидролизата казеина с добавками глюкозы, дрожжевого автолизата или кукурузного экстракта. При получении дифтерийного токсина или вакцин кишечных заболеваний, культивируя глубинным методом аэробные бактерии, используют обычные системы аэрации. При культивировании анаэробных бактерий, например возбудителя столбняка, для удаления кислорода из среды через нее пропускают инертный газ, например азот. [c.125]


    Внимание многих биохимиков в настоящее время сосредоточено на вопросе о том, камим образом поверхности клеток взаимодействуют с другими биологическими объектам и. На поверхности мембран, например, содержатся группировки, играющие роль антигенов. Антигены — это специфические химические структуры, которые вызывают образование антител, способных специфически связываться с ними. На поверхности эритроцита уже обнаружено около 250 различных антигенных группировок (детерминант). Эти детерминанты определяют группу крови, а аналогичные детерминанты, содержащиеся на поверхностях других клеток, определяют, будет ли отторгнута трансплантированная ткань. Различные бел ки из растений и из других источников действуют как агглютинины, связываясь, подобно антителам, с поверхностными группировками. Вирусы, атакующие клетки, адсорбируются на специфических поверхностных рецепторах, которые могут быть идентичны определенным антигенным детерминантам. Особенно интересно выяснить, каким образом одни клетки решают , что другие клетки являются чужеродными . Повышенный интерес к этой проблеме обусловлен тем, что ее решение может открыть путь к предотвращению реакций отторжения тканей и к лечению серьезных аутоиммунных заболеваний (гл. 16, разд. В.7). [c.372]

    Но этой перспективой не ограничиваются возможности создания искусственных вакцин. У многих вирусов антигенные детерминанты, ответственные за появление вируснейтрализующих антител, расположены в участках белка, первичная структура которых подвержена сильной изменчивости. Поэтому вакцина, приготовленная против одного серотнпа вируса, плохо защищает от вируса этого же вида, но с иным серотипом. [c.253]

    Вопрос о разработке вакцины против СПИДа в настоящее время стоит крайне остро, так как, по мнению ученых, эпидемия СПИДа выходит на новый виток. По оценкам специалистов, занимающихся проблемой СПИДа, вакцина против него может появиться не раньше чем в 2010—2015 гг. Но уже сейчас созданы предпосылки к ее разработке, а именно ее прототипы. Вещество-прототип вакцины будущего прежде всего является антигеном, имитирующим фрагменты живого вируса. Антиген в составе вакцины должен хорошо стимулировать иммунитет человека и защищать его от многих разновидностей болезнетворного вируса. Кроме того, необходим совершенно чистый антиген, производство которого должно быть недорогим. Такой прототип вакцины против ВИЧ создали российские ученые, обратившие внимание на один из его белков — р24, который не меняется у разных видов ВИЧ. Второй белок, gp41, а вернее, его фрагмент, взяли в качестве мощного стимулятора иммунитета. Затем был создан искусственный ген, кодирующий синтез обоих белков, а с помощью генной инженерии удалось получить in vitro гибридную молекулу белка, [c.492]

    При сравнении последовательности генов НА одного и того же одтипа вклады оснований, приводящие к заменам аминокислот, накапливаются в соответствии с хронологическим порядком выделения штаммов. Когда сайты замены локализованы в пределах -трехмерной структуры молекулы НА [132, 133], они концентрируется в четырех различных областях. Эти сайты, вероятно, представляют собой биологически родственные антигенные участки молекул НА на поверхности вириона [18, 19, 20, 37, 120, 123, 129, 132]. В условиях селективного иммунопресса системы хозяина могут быть отобраны мутанты, которые имели изменения в антиген-аых сайтах поверхностных гликопротеидов, что в свою очередь сриводит к изменениям иммунологических свойств вируса (антигенный дрейф). [c.109]

    Биолог. Согласно известным положениям иммунологии, а тоантите-ла, разрушающие клетки своего организма, так же как и антитела, защищающие его от бактерий и вирусов, производятся плазматическими клетками. Эти клетки образуются из fi-лимфоцитов - клеток иммунной системы - при соблюдении определенных условий [Петров, 1983]. Чтобы В-лимфощгг превратился в плазматическую клетку, он должен получить ровно два сигнала активации. Первый - от контакта с антигенным образованием или рецепторами клетки своего организма, а второй - от контакта с другой клеткой иммунной системы - Т -лимфоцитом, который [c.85]

    Все эти регуляторные элементы позволяют хозяйской РНК-полимеразе II осуществить эффективную транскрипцию ранних генов вскоре после попадания ДНК этого вируса в клеточное ядро. В результате процессинга ранних транскриптов (см. с. 302) образуются мРНК для ранних белков, а затем и сами эти белки. Один из них — Т-антиген — играет центральную роль в последующей перестройке транскрипции вирусного генома. Он вызывает ряд эффектов. Во-первых, взаимодействует с участками вирусной ДНК, связывающими Т-антиген (сильнее всего с участком и слабее всего с участком ]11 см. рис. 158). В результате угнетается транскрипция ранних генов, в том числе и гена, кодирующего Т-антиген, Таким образом, Т-антиген проявляет здесь свойства репрессора, синтез которого подчиняется транскрипционной аутогенной регуляции. Впрочем, транскрипция ранних генов на поздней стадии прекращается не полностью. Она продолжается, хотя и со значительно. меньшей эффективностью, но при этом стартовая точка транскрипции заметно смещается, так что ТАТА-элемент оказывается теперь внутри транскрибируемой последовательности (рис. 158). Механизм, обеспечивающий позднюю транскрипцию ранней области с новой стартовой точки, не расшифрован. [c.301]

    Выделение чистых И. проводится с помощью ионообменных смол с послед, гель-фильтрацией. Для мн. целей используют препараты миеломных И., особенно минорных классов. Антитела выделяют с помощью иммуносорбентов - фиксированных на нерастворимых носителях (напр, целлюлозе) антигенов. Обнаружение и количеств, определение И. разных классов проводят иммунологич. методами с помощью соответствующих антисывороток. Для определения кол-ва антител используют методы преципитации (иммунная р-ция осаждения антигена антителом), агглютинации (взаимод. антитела с двумя клетками), нейтрализации бактерий и вирусов и др. Широкое распространение получают радиоиммунные и ферментно-иммунные методы, обладающие исключительно высокой чувствительностью и позволяющие определять очень малые кол-ва антител (или антигенов) в смесях с др. в-вами. [c.217]

    Н. из мн. источников выделены и очищены до индивидуального состояния. Н. из вирусов гриппа состоит из четырех идентичных субъединиц с мол. м. ок. 33,5 тыс. Для этого 4 рмента идеитифицированы антигенные детерминанты и их расположение в молекуле. Оптимальная каталитич. активность фермента в зависимости от источника проявляется при разных значениях pH (обычно прн pH 3,5-7). [c.203]

    Известны три группы интерферонов а-интерфероны (а-И), образующиеся при воздействии вирусов на лейкоциты 3-интер-фероны (Р-И), появляющиеся при воздействии вирусов на фибро-бласты у-интерферойы, продуцируемые Т-лимфоцитами в ответ на воздействие бактериальными и вирусными антигенами или антисыворотками против поверхностных детерминант лимфоцитов. [c.140]

    Последний из рассматриваемых примеров белок-белковых взаимодействий касается антител или иммуноглобулинов (IgG). Эти белки производятся В-лимфоцитами в тех случаях, когда чужая макромолекула типа белка или углевода попадает в организм. Чужая макромолекула, называемая антигеном, может проникать туда в составе поражающих бактерий или вирусов через кожу (случайно, в результате ранения или намеренно при иммунизации) или через кишечник при пищевой аллергии. Если ковалентно присоединить к белку малую молекулу (гаптен) и затем ввести его в организм, обычно вырабатываются антитела к гаптену. Такое быстрое продуцирование антител подопытными животными является основой различных иммунологических методов, в частности ра-диоиммунодиагностических. [c.564]

    В одной из схем В-лимфоциты человека, активно продуцирующие специфические антитела, обработали флуоресцентно меченным антигеном, затем с помощью клеточного сортера провели обогащение образца В-лимфоцитами, вырабатывающими эти антитела. Поскольку В-клетки плохо растут в культуре, для улучшения роста их трансформировали вирусом Эпштейна-Барр. Некоторые клоны трансформированных В-кле- [c.214]

    ВИЧ поражает один из видов лимфоцитов, а именно Т-хелперы (Т -клетки). В норме в процессе развития иммунного ответа Т -клетки связывают продукты деградации специфических антигенов и высвобождают факторы, стимулирующие другие клетки иммунной системы к участию в иммунном ответе. Т -клетки играют в этом процессе ключевую роль, а при ВИЧ-ин-фекции они перестают функционировать. Как только вирус внедряется в Tjj-клетку, он становится защищенным от иммунной системы организма и начинает оказывать свое разрушающее действие на Тд-клетки. [c.222]

    Новый подход, позволяющий индуцировать у организма иммунный ответ без введения антигена, основан на включении в клетки животно-го-мишени гена, кодирующего белок-антиген. В первых экспериментах такого рода Е. соН-плазмиду, содержащую клонированный ген белка-антигена, транскрипция которого находилась под контролем промотора вируса животных, конъюгировали с микрочастицами золота и бомбардировали ими клетки уха мыши. Впоследствии выяснилось, что клонированную кДНК можно вводить в клетки и с помощью внутримышечной инъекции раствора с большим количеством плазмиды, несущей соответствующую ДНК. Для этого необходимо в 10 -10" раз больше ДНК, чем при бомбардировке микрочастицами. В одном из экспериментов более чем в 75% случаев ген включался в клетки мыши, и синтезированный белок-антиген индуцировал синтез антител. Этот подход позволяет избежать очистки антигена, что требует много времени и средств, или использования для соз- [c.233]

    А, транскрипция которой находилась под контролем промотора вируса саркомы Рауса или ци-томегаловируса. Хотя уровень экспрессии гена нуклеопротеина был настолько низок, что не поддавался регистрации, через 2 нед после иммунизации в крови мышей обнаруживались антитела к нему. Выживаемость иммунизированных мышей оказалась значительно выше, чем мышей из контрольной группы (рис. 11.5). Более того, они были нечувствительны и к другому штамму вируса гриппа. Такая перекрестная защита не вырабатывается при введении традиционных противогриппозных вакцин, полученных на основе поверхностных антигенов вируса, и поэтому каждая вакцина специфична лишь к одному штамму вируса. Более того, традиционные вакцины сохраняют свою эффективность только до тех пор, пока остаются неизмененными поверхностные антигены. К сожалению, для генов поверхностных антигенов характерна высокая частота мутаций, что приводит к появлению существенно различающихся штаммов вируса. Кбровые же белки, такие как нуклепротеин, относительно стабильны и активируют иммунную систему по другому механизму, чем поверхностные антигены. [c.233]


Смотреть страницы где упоминается термин Вирусы как антигены: [c.205]    [c.253]    [c.124]    [c.283]    [c.109]    [c.124]    [c.283]    [c.60]    [c.364]    [c.582]    [c.441]    [c.394]    [c.275]    [c.276]    [c.277]    [c.285]    [c.365]    [c.117]    [c.137]    [c.145]    [c.232]    [c.235]   
Смотреть главы в:

Вирусология в 3-х томах Т 2 -> Вирусы как антигены




ПОИСК





Смотрите так же термины и статьи:

Антигенность

Антигены



© 2024 chem21.info Реклама на сайте