Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клетки лизис

    Если поместить клетки в дистиллированную воду, происходит набухание, затем разрыв оболочек — лизис. Например, эритроциты окрасят воду в красный цвет (гемолиз). В растворах с высокой концентрацией солей происходит сморщивание клеток из-за потери воды (плазмолиз). [c.145]

Рис. 21.7. Аденовирусный вектор. В клетку-хозяина, несущую интегрированный в геномную ДНК функциональный ген Е1 аденовируса, вводят встроенную в сегмент аденовирусного генома (0-17 единицы карты) плазмиду с терапевтическим геном (ТГ) и участок геномной ДНК аденовируса (9-100 единицы карты). Длина генома аденовируса равна 100 единицам. В результате рекомбинации (штриховая линия) между перекрывающимися участками плазмиды и ДНК аденовируса образуется молекула ДНК, эквивалентная полноразмерному вирусному геному. Рекомбинантная ДНК, содержащая терапевтический ген, упаковывается и высвобождается из клетки после лизиса. Образующиеся вирусные частицы дефектны по репликации. Плазмидная ДНК, входящая в состав конечной генетической конструкции, не влияет на упаковку рекомбинантной ДНК (не показано). Рис. 21.7. <a href="/info/1549618">Аденовирусный вектор</a>. В <a href="/info/1304812">клетку-хозяина</a>, несущую интегрированный в геномную ДНК функциональный ген Е1 аденовируса, вводят встроенную в сегмент аденовирусного генома (0-17 <a href="/info/1324385">единицы карты</a>) плазмиду с терапевтическим геном (ТГ) и участок геномной ДНК аденовируса (9-100 <a href="/info/1324385">единицы карты</a>). Длина генома аденовируса равна 100 единицам. В <a href="/info/1394602">результате рекомбинации</a> (штриховая линия) между перекрывающимися участками плазмиды и ДНК аденовируса <a href="/info/512200">образуется молекула</a> ДНК, эквивалентная полноразмерному <a href="/info/32760">вирусному геному</a>. Рекомбинантная ДНК, содержащая терапевтический ген, упаковывается и высвобождается из <a href="/info/1902301">клетки после</a> лизиса. Образующиеся <a href="/info/1351511">вирусные частицы дефектны</a> по репликации. Плазмидная ДНК, входящая в состав конечной <a href="/info/1396268">генетической конструкции</a>, не влияет на упаковку рекомбинантной ДНК (не показано).

    Как показано на рнс. 15-22, хромосома обычно подразделяется на четыре оперона короткий — продуцирующий репрессор, ранний левый, ранний правый и поздний ). Ранние опероны детерминируют в основном синтез ферментов, обеспечивающих репликацию и рекомбинацию, а также синтез регуляторных белков. Поздний оперон связан с синтезом белков, необходимых для организации вирусных частиц он должен транскрибироваться с более высокой скоростью, которая обеспечивается Продуктом гена Q. В пределах позднего оперона гены от А до F участвуют в упаковке ДНК фага Айв образовании головок, тогда как гены от 2 до / обеспечивают синтез и сборку отростков. Гены S -а. R продуцируют белки, вызывающие разрушение мембраны бактерии-хозяина и лизис клетки. На последних стадиях фазы литического развития большая часть ранних генов выключается другим репрессором фага X (кодируемым геном его). Из сказанного видно, что регуляция транскрипции даже у вирусов может представлять собой достаточно сложный процесс. [c.261]

Рис. 21.9. Вектор на основе HSV-ампликон-плазмиды. Точка инициации репликации HSV (ori HSV), сигнал упаковки HSV и терапевтический ) ген (ТГ) встраивают в плазмиду Е. соН (HSV-ампликон-плазмида). Проводят трансфекцию клетки-хозяина, инфицированной вирусом-помощником HSV, полученной плазмидой. ДНК ампли-кон-плазмиды реплицируется по типу катящегося кольца . 10 амп-ликонов, соответствующих полноразмерному геному HSV, упаковываются в HSV-капсид, который поставляет вирус-помощник HSV. Геном этого вируса не упаковывается. HSV-частицы, несущие множество копий терапевтического гена, высвобождаются при лизисе клетки и используются для трансдукции нейронов. Рис. 21.9. Вектор на основе HSV-<a href="/info/1403409">ампликон</a>-плазмиды. <a href="/info/200587">Точка инициации репликации</a> HSV (ori HSV), сигнал упаковки HSV и терапевтический ) ген (ТГ) встраивают в плазмиду Е. соН (HSV-<a href="/info/1403409">ампликон</a>-плазмида). Проводят <a href="/info/1324393">трансфекцию клетки</a>-хозяина, <a href="/info/1310401">инфицированной вирусом</a>-помощником HSV, <a href="/info/1396459">полученной плазмидой</a>. ДНК ампли-кон-<a href="/info/1403734">плазмиды реплицируется</a> по типу катящегося кольца . 10 амп-<a href="/info/740041">ликонов</a>, соответствующих полноразмерному геному HSV, упаковываются в HSV-капсид, который поставляет <a href="/info/1310546">вирус-помощник</a> HSV. Геном этого вируса не упаковывается. HSV-частицы, несущие множество копий терапевтического гена, высвобождаются при <a href="/info/98011">лизисе клетки</a> и используются для трансдукции нейронов.
    В результате размножения вируса в инфицированной клетке происходит ее лизис. [c.222]

    Этот вопрос остается в целом неразрешетшым, хотя недавно было выдвинуто нредположение [14, 15], что клетки грамотрица-тельных бактерий (в частности, Е. соИ) лизируются иод действием лизоцима только ири создании условий для осмотического шока бактерий, когда суспензию бактериальных клеток резко разбавляют в присутствии фермента. При этом лизоцим захватывается потоком воды через норы во внешней мембране внутрь клетки, и скорость лизиса возрастает в 50—100 раз. Не вдаваясь в детали предлагаемой гипотезы, можно тем не менее заключить, что сложность физического доступа лизоцима к своему специфическому субстрату — пеитидогликаиу — в составе бактериальной клеточной стенки может в известной стеиени мешать оценке действительной реакционной сиособности пептидогликана и выявлению истинной субстратной специфичности фермента. Этот фактор необходимо принимать во внимание при изучении кинетики и механизмов бактериолитического действия ферментов. [c.145]


    Бинарное деление может происходить в одной или нескольких плоскостях. В первом случае, если после деления клетки не расходятся, это приводит к образованию цепочек палочковидных или сферических клеток, во втором — к клеточным скоплениям разной формы (см. рис. 3, 4—6). Расхождение образовавшихся дочерних клеток происходит в результате лизиса среднего слоя клеточной стенки. [c.60]

    Т-клетки лизис инфицированных клеток [c.201]

    Микроорганизмы приспосабливаются к окружающей среде и всякое нарушение оптимальных условий приводит к подавлению их развития и даже к отмиранию. Губительно действуют на микробную клетку изменение pH среды, нарушение кислородного режима, резкое изменение температуры, истощение питательных веществ, действие прямых солнечных лучей, а также и биологические факторы. Например, он и погибают вследствие лизиса (растворения их клеток бактериофагом) и вследствие антагонизма с другими бактериями. [c.283]

    Клетки подвергают лизису, белки фиксируют на фильтре. 3. Наносят на фильтр первые антитела, которые связываются только с искомым белком, 4. Несвязавшиеся первые антитела удаляют, наносят на фильтр вторые антитела, специфичные в отношении первых антител, связанные с ферментом (например, щелочной фосфатазой), [c.69]

Рис. 21.10. Образование HSV-вектора с помощью рекомбинации. Проводят котрансфекцию кдетки-хозяи-на плазмидой, которая содержит терапевтический ген, фланкированный последовательностями ДНК из вспомогательных областей HSV-генома, и ДНК HSV дикого типа. HSV-геном реплицируется в клеточно1М ядре по типу катящегося кольца , при этом между фрагментами ДНК HSV, входящими в состав плазмиды, и ДНК HSV дикого типа может произойти рекомбинация (штриховая линия). Молекулы ДНК HSV дикого типа и рекомбинантного HSV упаковываются в вирусные частицы, высвобождающиеся из клетки после лизиса. Вирусы размножают и проводят скрининг бляшек для идентификации рекомбинантных HSV. Полученные HSV-векторы хранят в условиях, исключающих их загрязнение HSV дикого типа. Рис. 21.10. Образование HSV-вектора с <a href="/info/1345807">помощью рекомбинации</a>. Проводят котрансфекцию кдетки-хозяи-на плазмидой, которая содержит терапевтический ген, фланкированный последовательностями ДНК из вспомогательных областей HSV-генома, и ДНК HSV <a href="/info/700379">дикого типа</a>. HSV-геном реплицируется в клеточно1М ядре по типу катящегося кольца , при <a href="/info/1915927">этом между</a> фрагментами ДНК HSV, входящими в состав плазмиды, и ДНК HSV <a href="/info/700379">дикого типа</a> может произойти рекомбинация (штриховая линия). Молекулы ДНК HSV <a href="/info/700379">дикого типа</a> и рекомбинантного HSV упаковываются в <a href="/info/1401121">вирусные частицы</a>, высвобождающиеся из <a href="/info/1902301">клетки после</a> лизиса. Вирусы размножают и проводят скрининг бляшек для <a href="/info/103099">идентификации рекомбинантных</a> HSV. Полученные HSV-векторы хранят в условиях, исключающих их загрязнение HSV дикого типа.
    В конечном счете действие комплемента приводит к разрушению клеток путем их лизиса и к активации лейкоцитов, поглощающих чужеродные клетки в результате фагоцитоза. Комплемент индуцирует также освобождение хемотаксиче-ских факторов, которые обеспечивают перемещение полиморфноядерных лейкоцитов в соответствующую зону (гл. 1, разд. Д-2). Внимание биохимиков было сконцентрировано на распознающем компоненте комплемента С1, который состоит из 3 белков, обозначаемых lq, С1г и ls. Белок lq взаимодействует с Сн2-до.меном антител, связавших антигены. Однако (дополнение 5-Е) для активации lq необходим по крайней мере димер IgG или самопроизвольно образующийся пентамер IgM. Структура фактора lq (его мол вес равен 400 ООО) довольно необычна. К центральной части молекулы, диаметр которой составляет 3—6 нм, а длина— 10—12 нм, присоединены шесть очень тонких соединительных нитей длиной 10—13 нм и диаметром около 1,5 нм, заканчивающихся глобулами, имеющими диаметр нм. [c.387]

    Клетка-донор, Фаг Лизис клетки-донора [c.105]

    Ген Мутант Число жизнеспособных фагов на клетку Лизис клеткн- хозяина Фаговая ДНК Фибриллы отростка г оловки Отрост- ки [c.285]

    Каждая живая клетка имеет оболочку или поверхностный слой протоплазмы, обладающие свойством полупроницаемостн. Так, оболочка эритроцитов непроницаема для ряда катионов (например, для К+ и N3+), хотя она свободно пропускает анионы и воду. Помещая животные или растительные клетки в дистиллированную воду, можно наблюдать перемещение воды внутрь клеток, что ведет к их набуханию, а затем к разрыву оболочек и вытеканию клеточного содержимого. Если в таком опыте использовать эритроциты, то вода окрасится гемоглобином в красный цвет. Подобное разрушение клеток путем разрыва их оболочек (или поверхностных слоев протоплазмы) называют лизисом, а в случае эритроцитов — гемолизом. [c.40]

    Когда ДНК бактериофага проникает в бактериальную клетку, она обычно практически мгновенно начинает контролировать работу метаболического аппарата клетки и направляет его полностью на образование новых вирусных частиц. В результате приблизительно через 20 мин образуется 100—200 новых вирусных частиц, что приводит к лизису клетки и ее гибели. Принципиально отлично от этого ведут себя умеренные фаги. Проникнув в клетку, ДНК умеренного фага может репрессироваться и интегрироваться с бактериальным геномом точно так же, как фактор Р (рис. 15-2). При этом он переходит в состояние профага и вступает в гак называемую лизогенную фазу развития репрессированная ДНК фага реплицируется как часть генома бактерии, не причиняя эреда летке до тех пор, пока какой-нибудь фактор не снимет репрессию и не активирует интегрированный генетический материал. После этого происходят репликация фага и л нэис бактерии. Умеренные [c.258]

    Осмос в природе. Животные н растит, клетки представляют собой микроскопич. осмотич. системы, поскольку у клетки оболочка или прилегающая к ней плазмолемма обладают св-вами полупроницаемых. мембран. Если поместить клетки в дистиллированную воду, происходит набухание, а затем разрыв оболочек (осмотич. шок, или лизис). В р-рах с высокой концентрацией солей наблюдается падение осмотич. давления и ко.хтапс клеток из-за потери воды (плазмолиз). Это явление используют, иапр., при консервировании пищ. продуггов путем добавления больших кол-в соли или сахара микроорганизмы подвергаются плазмолизу и становятся нежизнедеятельными. [c.419]


    Механизм Т. включает необратимую адсорбцию ДНК клетки-донора (напр., вьщеляемую в среду в результате лизиса клеток) на пов-сти клетки-реципиента. Хорошо адсорбируется лишь ДНК, имеющая мол. массу не менее 300 тыс. У большинства бактерий адсорбироваться может ДНК любого происхождения. У гемофильных бактерий адсорбируются лишь такие фрагменты ДНК, к-рые несут специфич. последовательности из 11 пар нуклеотидов, характерных лишь для ДНК таких бактерий. Видоспецифич. адсорбция характерна также для гонококков. Адсорбция осуществляется на спец. рецепторах, где ДНК связывается с особыми белками и втягивается в клетку. При этом одна из нитей ДНК разрушается благодаря нуклеазной активности связывающих ДНК белков, и в клетку поступает уже однонитевая ДНК. Она тут же обволакивается молекулами белков, к-рые защищают ДНК от клеточных экзонуклеаз и способствуют ее контакту с хромосомой, а затем рекомбинации с ней. На этом процесс Т. завершается. [c.626]

    Большой интерес вызывает тот факт, что цианобактерии могут выступать в качестве фототрофного компонента ассоциаций с растительными клетками. Использование прггательных сред, в которых не хватает источника углерода, показало, что прирост растительных клеток может быть обеспечен за счет усвоения ими продуктов фотосинтеза цианобактерий или их лизиса. Однако не все сочетания растений и цианобактерий оказывают взаимное благотворное влияние. Выявлена видовая специфичность взаимодействия партнеров. Так, клетки культуры мака и АпаЬаепа апаЫИа взаимно подавляли рост друг друга. В то же время на рост культивируемых клеток табака, женьшеня, диоскореи цианобактерии оказывали стимулирующее влияние. В большинстве случаев существенное влияние одного партнера на ростовые процессы другого не выявлялось. [c.192]

    Для получения аденовирусного вектора провели котрансфекцию клеточной линии, синтезирующей продукты аденовирусного гена El, двумя участками генома аденовируса (рис. 21.7). Один из них может существовать в виде плазмиды в Е. соИ и содержит вместо El-области терапевтический ген, фланкируемый нуклеотидными последовательностями аденовируса, а второй представляет собой молекулу ДНК аденовируса, которая лишена 5 -концевого участка, включающего Е1-область, и имеет перекрывающийся участок с несущей терапевтический ген плазмидой. Рекомбинация между двумя трансфицирующими фрагментами ДНК в области их перекрывания приводит к восстановлению полноразмерного аденовирусного гена, в котором вместо El-области находится терапевтический ген. Продукты гена El, поставляемые клеткой-хозяином, инициируют образование вирусных частиц, высвобождающихся из клетки в результате лизиса. Клонирующая емкость аденовирусного вектора [c.494]

    В связи с рассмотрением РНК фага MS2, следует указать также на другой способ размещения разных кодирующих последовательностей в одной мРНК. Дело в том, что MS2 РНК кодирует еще и четвертый белок, названный белком лизиса, или L-белком (он, повидимому, участвует в лизисе хозяйской клетки на завершающей фазе инфекции). Этот белок закодирован участком РНК, начинающимся в конце С-цистрона, захватывающим всю 36-нуклеотидную вставку между С-цистроном и S-цистроном и заканчивающимся в пределах S-цистрона рамка считывания этого перекрывающегося L-цистрона сдвинута вправо на один остаток (+1 сдвиг), так что никакие его участки не транслируются при синтезе С-белка и S-белка. L-цистрон имеет свой инициаторный кодон AUG, не в фазе с кодонами С-цистрона, и, соответственно, свой терминаторный кодон UAA, не в фазе с кодонами S-цистрона. Эта ситуация изображена на рис. 7. Использование перекрывающихся кодирующих последовательностей в пределах одной мРНК встречается, однако, не часто и свойственно, по-видимому, в основном вирусным системам, где экономия места для размещения цистронов играет особенно важную роль. [c.21]

    В производстве стрептомицина, хлортетрациклина, эритромицина и других антибиотиков, а также энтобактерина — средства борьбы с вредителями растений, ацетона, молочной кислоты и других веществ большую опасность представляют вирусы бактерий — фаги. Это внутриклеточные паразиты, которые, проникая внутрь бактерий или актиномицетов (актинофаги), размножаются, используя для этого клеточные вещества, и приводят клетку к разрушению — лизису. Уже в 1898 г. Н. Гамалея наблюдал лизис бактерий, но только в 1915 г. английский бактериолог Таурт установил, что агент, вызывающий лизис стафилококков, имеет инфекционную природу и не задерживается обычными бактериальными фильтрами. [c.60]

    После проникновения в клетку фаги размножаются очень быстро. Уже через 10 мин после инфицирования в каждой клетке культуры бакте1 й можно найти 2—3 фага, а через 20 мин — уже 100. После лизиса бактериальной клетки фаги выделяются из нее и переходят в зрелую форму. Клеточные фаги могут находиться и в форме профагов. В этом случае они, находясь в скрытом состоянии, не уничтожают клетку, а при помощи своей ДНК, связанной с ДНК клетки, синхронно репродуцируются вместе с клеткой. Если клетки бактерий, содержащие профаги, попадают в неблагоприятные условия (воздействие ультрафиолетовых лучей или ядовитых соединений), профаги могут перейти в вегетативную форму, размножиться и лизировать клетку. Такие культуры бактерий, содержащие профаги, называют либо [c.60]

    Еще сравнительно недавно протеиназы традиционно связывали только с процессами переваривания. В настоящее время появляется все больше данных о более широкой биологической роли протеолитических ферментов органов и тканей в регуляции ряда вне- и внутриклеточных процессов. Некоторые протеиназы выполняют защитную функцию (свертывание крови, система комплемента, лизис клеток), другие генерируют гормоны, токсины, вазоактивные агенты (ангиотензин, кинины). Ряд протеиназ регулирует образование пищеварительных ферментов, взаимодействие между клетками и клеточными поверхностями, процессы фертилизации (хитин-синтетаза) и дифференциации. Регуляция в большинстве случаев предусматривает превращение неактивного предшественника в активный белок путем отщепления ограниченного числа пептидов. Этот процесс, впервые описанный К. Линдерстрем-Лангом еще в 50-е годы, в последнее время называют ограниченным протеолизом. Значение его очень важно для понимания сущности биологического синтеза в клетках неактивных пре-и пробелков. Кроме того, этот процесс нашел широкое практическое применение в лабораториях и промышленности. В регуляции действия протеолитических ферментов участвуют также ингибиторы протеиназ белковой природы, открытые не только в поджелудочной железе, но и в плазме крови, курином яйце и т.д. [c.423]

Рис. 21.8. Вектор на основе аденоассопиированного вируса (ААВ). Проведена котрансфекция клетки-хозяина, инфицированной аденовирусом-помощником, двумя плазмидами, одна из которых содержит терапевтический ген (ТГ), фланкированный инвертированными концевыми повторами (ITR) ААВ, а другая — гены ААВ, ответственные за репликацию гер) и формирование капсида ap), которые находятся под контролем промотора р), и последовательность полиаденилирования (ра). Высвободившиеся после лизиса частицы рекомбинантного ААВ и аденовируса разделяют центрифугированием, а оставшиеся аденовирусные частицы инактивируют нагреванием. Рис. 21.8. Вектор на основе аденоассопиированного вируса (ААВ). Проведена котрансфекция <a href="/info/1304812">клетки-хозяина</a>, инфицированной аденовирусом-помощником, двумя плазмидами, одна из которых содержит терапевтический ген (ТГ), фланкированный инвертированными <a href="/info/33238">концевыми повторами</a> (ITR) ААВ, а другая — гены ААВ, ответственные за репликацию гер) и формирование капсида ap), <a href="/info/1597898">которые находятся</a> под контролем промотора р), и последовательность полиаденилирования (ра). Высвободившиеся после лизиса частицы рекомбинантного ААВ и аденовируса <a href="/info/1007656">разделяют центрифугированием</a>, а оставшиеся аденовирусные частицы инактивируют нагреванием.
    Эндоцитоз — чрезвычайно важный биологический процесс, присущий только эукариотам с него начинается внутриклеточное пищеварение (гидролиз биологических макромолекул) и эндосимбиоз. Один из продуктов аппарата Гольджи — окруженные мембраной пузырьки, называемые лизосомами. Лизосомы содержат обширный набор гидролитических ферментов, способных расщеплять биологические макромолекулы почти всех типов. В норме эти ферменты не действуют на компоненты собственной клетки, так как они отделены лизосомной мембраной. Однако лизосомы могут сливаться с вакуолями, образовавшимися при эндоцитозе, обеспечивая таким образом гидролиз веществ (или лизис клеток), содержащихся в этих вакуолях затем растворимые продукты гидролиза диффундируют в окружающую цитоплазму (рис. 1.20). Этот [c.52]

    Литический цикл (Lyti y le) Размножение вируса в клетке-хозяине, оканчивающееся лизисом клетки. [c.552]

    Третий этап характеризуется образованием мембраноатакующего комплекса комплемента. Фрагменты, полученные в результате протеолиза компонентов комплемента, погружаются в липидный бислой клеточной мембраны и вызывают лизис бактериальной клетки. [c.491]


Смотреть страницы где упоминается термин Клетки лизис: [c.112]    [c.199]    [c.26]    [c.247]    [c.442]    [c.230]    [c.602]    [c.144]    [c.92]    [c.144]    [c.272]    [c.104]    [c.110]    [c.123]    [c.71]    [c.72]    [c.486]    [c.226]    [c.69]    [c.25]   
Общая химия Биофизическая химия изд 4 (2003) -- [ c.75 ]




ПОИСК





Смотрите так же термины и статьи:

Активация системы комплемента. Лизис чужой клетки

Вирусы лизис клетки

Витамин D защита бактериальной клетки от лизиса

Лизис зараженных вирусом клеток антителами и комплементом

Методы лизиса клеток

Полный лизис клеток

Раствор акриламида лизиса клеток



© 2025 chem21.info Реклама на сайте