Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модель поляризации электронов проводимости

    Изучение с помощью эффекта Мессбауэра [321, 322] сверхтонкого поля на ядре Ir показало, что поле приблизительно пропорционально функции gJ—1)/, как это и предсказывает модель поляризации электронов проводимости Касуйи — Иоси-ды [23, 24]. Зависимость сверхтонкого поля от gJ— 1)7 показана на фиг. 46 видно, что при gJ—1)7 = 0 напряженность сверхтонкого поля экстраполируется к величине —170 кЭ. Это можно интерпретировать с помощью представления о других вкладах в полное поле (практически не зависящих от ионного [c.103]


    Магнитное поведение, как правило, не противоречит представлению о косвенном обменном взаимодействии типа взаимодействия РККИ, которое осуществляется путем поляризации электронов проводимости. Ситуация, однако, осложняется возможностью межполосного смешивания, которое имеет место в виде взаимодействия 4/-электронов и электронов полосы проводимости. Это в свою очередь вызывает поляризацию электронов проводимости, которая препятствует поляризации, вызванной гейзенберговским обменным взаимодействием. Результирующая поляризация на данном ионном узле может быть либо положительной, либо отрицательной. Во многих системах знак и величина полной поляризации электронов проводимости были измерены экспериментально в опытах по электронному спиновому зезонансу или по ядерному магнитному резонансу. Де Вийн и др. 93] показали, что в общем случае эффективный обменный интеграл меняется с величиной граничного импульса Ферми кр вид этой зависимости показан на фиг. 22, Смена знака обменного интеграла, наблюдающаяся вблизи значения /гр=1,4А" , вызвана изменениями относительной доли двух компонент в результирующей поляризации электронов проводимости. Величины кр, использованные на этой фигуре, получены путем подгонки экспериментальных данных к соотношениям типа (10), (13), (14) и (25). Многие из них включают оценку члена Р(2крЯ) для данной частной решетки. Такая оценка была произведена с использованием модели свободных электронов, и, следовательно, она не включала в рассмотрение эффекты зон Бриллюэна или связанной с ними анизотропии ферми-поверхности, в то время как эти последние эффекты существенно влияют на окончательную [c.67]

    Рассмотрим вкратце результаты, полученные при исследовании солей Ре + и Ре +. Соли трехвалентного железа являются простейшей моделью, поскольку электронная конфигурация Зй наружной оболочки иона железа Ре отвечает отсутствию орбитального момента (терм ь/з) (в слабом кристаллическом поле лигандов). Соли Ре — к тому же диэлектрики, т. е. в них нет электронов проводимости, а следовательно, они не дают вклада в контактное ферми-взаимодействие. Ниже температуры Нееля атомные магнитные моменты выстраиваются вследствие обменного взаимодействия, так что каждый атом имеет среднее во времени значение компоненты намагниченности вдоль оси внешнего магнитного поля Но. Как указывалось выше, вклад дипольного взаимодействия в магнитные поля по крайней мере на порядок меньше наблюдаемых величин. Следовательно, в данном случае поле на ядрах определяется почти целиком поляризацией внутренних -электронов, которая приводит к отличной от нуля величине контактного ферми-взаимодействия. Как показали исследования большого количества соединений трехвалентного железа, величина магнитного поля, приходящаяся на спин, равный единице, колеблется в пределах от 210 до 250 кэ (а сами абсолютные значения полей составляют Я ж 450 550 кэ). Меньшие величины характерны для окислов, большие — для фторидов. Для солей двухвалентного железа интервал величин полей гораздо шире — они изменяются от 220 кэ для Ре " в СоО до 330 кэ для РеРг и до 485 кэ для Ре + в Рез04. Причина такого разброса в величинах полей, по-видимому, лежит в различных вкладах орбитального момента Зй-электро-нов [17]. [c.71]


    Хемосорбированный водород даже на сравнительно совершенной поверхности нельзя рассматривать как однородный объект. Даже если ограничиться рассмотрением хемосорбции водорода типа А (прочно связанный водород), нельзя считать, что все адсорбированные атомы одинаковы по своим свойствам. Должно существовать несколько типов, или состояний, адсорбированных атомов, и заселенность этих состояний зависит от температуры, степени заполнения поверхности и, конечно, от наличия поверхностных дефектов (т. е. локальных участков с высокой энергией, которые будут сильно взаимодействовать с водородом). Таким образом, относительный средний заряд адсорбированных атомов, а также спектр зарядовых состояний будет меняться. Хориутии Тойя [78] весьма подробно описали интересную модель хемосорбции водорода, она разрабатывалась математическими методами и сравнивалась с экспериментальными данными [78]. Эта модель предполагает существование двух типов адсорбированных атомов г и 5. Адсорбированные атомы г расположены непосредственно над атомами металла и над поверхностью электрического слоя для них расстояние М—Н составляет примерно 2,5 А. Адсорбированные атомы типа г имеют поляризацию, противоположную поляризации двойного электрического слоя, и, как полагают, отвечают за увеличение электрического сопротивления металлических пленок и возрастание работы выхода при хемосорбции водорода. Отталкивание адсорбированных атомов г должно быть сравнительно большим. Адсорбированные атомы 5 проникают через электронную поверхность и занимают промежуточные положения между поверхностью металла и электронным слоем. Постулируется, что эти адсорбированные атомы предоставляют электроны в зону проводимости и что они не локализованы, т. е. не связаны с конкретным атомом металла. Их можно рассматривать как псевдопротоны [c.33]

    Матричные элементы возмущения вычислялись в [14—20] на функциях Блоха валентной зоны и зоны проводимости. В работе же [12] искажение электронной плотности рассматрп-валось как поляризация атомов (ионов) кристалла внешним полем, и методами динамики решетки вычислялись дипольные моменты, индуцированные в каждом узле решетки полем пробного заряда и всех остальных узлов. При обосновании такого подхода в [3, 4] также рассматривалось возмущение электронной подсистемы кристалла внешним полем и смещениями ядер. Однако при использовании теории возмущений в качестве базисных брались возбужденные атомные функции. Поскольку функции Блоха могут быть выражены через функции Ваннье и наоборот, оба эти подхода в какой-то мере эквивалентны. Однако поскольку как в одном, так и в друго.м способе сделаны различные упрощающие предположения, разные в разных моделях, и, кроме того, сами расчеты, а также выбранные параметры, по необходимости, приближенны, то конечные результаты могут заметно расходиться. Тем инте- [c.144]

    Для построения дисперсионной теории необходимо принять соответствующую молекулярную модель, при помощи которой можно изучить взаимодействие между излучением и материей. При помощи старейшей молекулярной модели КлаУзиуса—Мозотти (твердый шар с металлически-прово-дящей поверхностью, по которой свободно перемещаются заряды) можно, правда, объяснить преломление света, но не дисперсию, так как вследствие металлической проводимости должно происходить сильное затухание, и поэтому предложенная модель представляет собой систему, не способную к колебаниям. Вследствие этого Максвелл и Лорентц положили в ОСНОВУ классической дисперсионной теории другую молекулярную (атомную) модель. Эта модель, как и та, которая была использована выше для истолкования когезионных сил, состоит из положительных (теперь ядер атомов) и отрицательных зарядов (электронов). Эти заряды могут смещаться, вследствие чего под влиянием возникшего электрического поля наступает поляризация. Чтобы получить систему, способную к колебаниям, Максвелл и Лорентц принимают, что заряды в определенных местах удерживаются в состоянии покоя особыми силами , которые при возникающих нарушениях стремятся вернУть заряды обратно в состояние покоя. Цель построе- [c.112]


Смотреть страницы где упоминается термин Модель поляризации электронов проводимости: [c.38]    [c.200]   
Интерметаллические соединения редкоземельных металлов (1974) -- [ c.103 ]




ПОИСК





Смотрите так же термины и статьи:

Проводимость

Проводимость электронная



© 2025 chem21.info Реклама на сайте