Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обменное взаимодействие

    При минимальной энергии взаимодействия наблюдается физическая адсорбция. В основе ее лежит диполь-дипольное взаимодействие Ван-дер-Ваальса молекула сорбата и сорбирующая поверхность поляризуют друг друга, и взаимодействие между индуцированными диполями порождает теплоту адсорбции. Ее величина обычно не превышает 0,015—0,03 аДж. При обменном взаимодействии электронов твердого тела с частицей сорбата, когда энергия связи составляет около 0,15 аДж, связь имеет химическую природу, и такая адсорбция именуется хемосорбцией [206]. [c.182]


    Катион и анион многозарядны. Подавляющее число солей, относящихся к зтой группе, весьма малорастворимы и вследствие этого их обменное взаимодействие с водой практически незначительно. Исключение составляют сульфиды некоторых трехвалентных металлов, например алюминия и хрома, которые в водном растворе полностью и необратимо гидролизуются с образованием основания и кислоты  [c.138]

    О а Е к оказывают на спектр ЭПР, показано на рис. 13.22. При J = = 260 см в Си2(ОАс)4 в спектре ЭПР не наблюдаются переходы между состояниями с 5 = 0 и 5=1. Обменное взаимодействие приводит к низкоэнергетическому состоянию 5 = 0, поэтому с падением температуры снижается интенсивность сигналов. Эта температурная зависимость приводит к значению J, равному — 260 см " что соответствует разделению состояний с 5 = 0 и 5=1 величиной 27, или — 520 см". В рассмотренном ранее спектре порошкообразного образца расщепление полос д и обусловлено двумя переходами с АМ = 1, усредненными по ориентациям. В относительно редкой ситуации, когда параметр обмена J меньше, чем доступная энергия микроволнового [c.248]

    Рассмотрим реакцию обменного взаимодействия типа  [c.368]

    Я опишу историю этой работы так, как я это помню. Ни одна другая оригинальная идея, ни моя, ни Лондона, не была такой амбициозной, как эта, Поначалу мы помышляли о малом, — требовалось рассмотреть вопрос о силах Ван-дер-Ваальса. Мы полагали, что ответ можно получить, если рассчитать взаимодействие зарядов двух атомов водорода и их зарядовых плотностей, вовсе не думая об обменном взаимодействии... В результате мы пришли к тому, что впоследствии было названо кулоновским интегралом , значение которого было, однако, слишком велико для сил Ван-дер-Ваальса, хотя и отвечало значительному межатомному притяжению. Некоторое время мы действительно испытывали затруднения, которые были связаны с тем, что неясным оставался смысл полученного результата. Мы не знали, что с ним делать. Вскоре появилась статья Гейзенберга об обмене, но почему-то обмен в ней смешивался с резонансом,— с резонансом двух электронов одного и того же атома, когда один из них возбужден, а другой находится в основном состоянии, — хотя сам Гейзенберг представлял дело так, будто оба понятия (обмена и резонанса — И. Д.) следует различать, и мы поначалу не предполагали, что обмен вообще играет какую-либо роль. Но вместе с тем, мы не могли двигаться дальше, и в течение нескольких недель создавшаяся ситуация была главным предметом наших раздумий и частых дискуссий. [c.152]

    Гидролизу могут подвергаться химические соединения различных классов соли, углеводы, белки, эфиры, жиры и т. д. В неорганической химии чаще всего приходится иметь дело с гидролизом солей, т. е. с обменным взаимодействием ионов соли с ионами воды, в результате которого смещается равиовесие электролитической диссоциации воды. [c.202]

    Выведем интегральные уравнения сохранения массы, импульса. Механика смесей строится на основе физических законов сохранения массы, импульса и энергии, поэтому далее будем записывать балансовые соотношения массы, импульса и энергии для каждой соответствующей смеси в некотором фиксированном в пространстве объеме смеси V ограниченном поверхностью 5, учитывая при этом обмен (взаимодействие) не только с внешней (по отношению к выделенному объему V) средой, но и соответствующий обмен (взаимодействие) массой, импульсом и энергией между составляющими внутри объема V. [c.15]


    Зависимость (212.2) может быть представлена графически в трехмерном пространстве или в виде изоэнергетических линий в двухмерной системе координат п и гг. Расчет энергии такой системы, состоящей из 3 ядер и 3 электронов, был сделан методом МО ССП с расширенным базисом. На рис. 188 приведены результаты одного из таких расчетов. Изоэнергетические линии системы вычерчены при изменении п и гг. Диаграмма подобна топографической карте. Рассмотрим, как будет изменяться внутренняя энергия при столкновении молекулы АВ с атомом С. Внутренняя энергия исходного состояния молекулы АВ (На) принята равной —440 кДж/моль, энергия атома С (атома Н) — равной нулю. Пусть кинетическая энергия поступательного движения молекулы АВ и атома С по линии, соединяющей центры атомов, будет равна (,. Примем за исходное состояние системы состояние, обозначенное на рис. 188 точкой 1. В этом состоянии атом С находится на расстоянии г% =2 10 м. Энергия межмолекулярного взаимодействия между АВ и С невелика, поэтому внутреннюю энергию системы можно принять равной энергии исходного состояния. При приближении атома С к молекуле АВ преодолеваются силы отталкивания между одноименно заряженными ядрами атомов В и С. Внутренняя энергия системы при этом возрастает. Точка, характеризующая состояние системы, будет двигаться по линии минимальных энергетических градиентов, изображенной на рис. 188 пунктиром. В интервале между точками 2 ж 4 система находится на перевале, разъединяющем исходное и конечное состояния. На вершине энергетического барьера, в точке <3, при г = гг, атомы А и С энергетически тождественны. Система находится в переходном состоянии (см. 210). Однако в состоянии атомов А и С есть существенное различие. Атом С продолжает движение по направлению к атому В за счет кинетической энергии поступательного движения, а атом А совершает колебательное движение относительно атома В. На вершине потенциального барьера возникает взаимодействие в форме притяжения между атомом С и молекулой АВ, обусловленное обменным взаимодействием энергетических уровней молекулы АВ и атома С. В точке 4 система находится в состоянии мо-кулы ВС и атома А. На пути от точки 4 к точке 5 энергия отталкивания переходит в энергию поступательного движения молекулы ВС и атома А. Внутренняя энергия системы уменьшается до энергии конечного состояния (молекулы ВС и атома А), равной —440 кДж/моль. [c.570]

    Обменное взаимодействие нитрата натрия и хлористого калия [c.239]

    В результате обширного литературного обзора [37, 38, 39 и др.] достоверно установлено, что фазовые переходы во множестве конденсированных углеводородных систем происходят в результате ступенчатого структурирования по принципу иерархии. Низшие структурные элементы являются элементарными ячейками высших. В различных системах обнаружено от 3 до 5 иерархических ступеней. Низшие элементы имеют порядок 10..,20А, высшие достигают десятков микрон и более. Органические молекулы склонны к образованию кристаллов. Для них характерно отсутствие обменного взаимодействия. Наиболее вероятная природа сил межмолекулярного взаимодействия это радикальные взаимодействия, водородная связь, диполь-дипольное и ориентационное взаимодействие. [c.41]

    Таким образом, реакции нейтрализации, в которых участвуют слабые кислоты или основания, — обратимы, т. е. могут протекать не только в прямом, но и в обратном направлении. Это означает, что при рас-гворении в воде соли, в состав которой входит анион слабой кислоты или катион слабого основания, протекает процесс гидролиза —обменное взаимодействие соли с водой, в результате которого образуется слабая кислота или слабое основание. [c.148]

    Сколько граммов AgN03 потребуется для обменного взаимодействия с 60 мл 12,2%-ного раствора НС (р =1,06)  [c.28]

    Гидролиз солей, или их обменное взаимодействие с водой, происходит лишь в тех случаях, ко1 да ионы, образующиеся в результате электролитической диссоциации соли, -- катион, анион или оба вместе - способны образовывать с нонами нод1>1 Н и ОН малодиссо,циированные соединения. Гидро.лизу подвергаются соли, образованные а) слабыми кислотами и сильными основаниями б) слабыми основаниями и сильными кислотами и в) слабыми кислотами и слабыми основаниями. [c.129]

    Естественно, что эти обстоятельства на заре квантовой химии послужили причиной истолкования природы химической связи как проявления некоего особого неклассического обменного взаимодействия . При этом термкн обмен понимали-двояко  [c.149]

    Не каждое используемое в теории понятие имеет своего, как говорят методологи, референта ( представителя ) в объективной реальности. Примерами таких понятий в квантовой химии могут служить резонансные структуры, обменное взаимодействие, переходное состояние в химической кинетике, которое, кстати, тоже спектроскопически ненаблюдаемо, и т. д. Но отсюда не следует, что такие понятия не имеют большого смысла и должны быть изгнаны из теории. [c.174]

    В результате электроны а-связи С — Н поляризуются, и на атоме водорода появляется спиновая плотность, знак которой противоположен знаку плотности неспаренного электрона на р,-орбита г1и углерода. Таким образом, причиной большей стабилизации структуры I по сравнению со структурой II является электронное обменное взаимодействие. [c.25]


    Эти интегралы носят название обменных интеграитов, поскольку они характеризуют обменное взаимодействие орбиталей, на которых находятся электроны ( и ]. Если спины двух электронов параллельны, квадраты [c.25]

    Если спин направлен вдоль поля в низкоэнергетической и против поля в на атомах 1 и 3 по сравнению с атомом 2 должно наблюдаться увеличение спиновой плотности, направленной вдоль поля. В 1 /1 при спиновой плотности, направленной против поля, на атоме 2 должна быть большая величина отрицательной спиновой плотности, чем на атомах I и 3. Таким образом, мы не переводим каких-либо неспаренпых электронов на старую орбиталь ф , а только влияем на распределение неспаренных спинов на трех атомах, что приводит к отрицательной (противоположной приложенному полю) спиновой плотности на С . Эта отрицательная спиновая плотность затем спип-поляризуется под действием электронной пары связи С — Н [см. обсуждение уравнения (9.11)] так, что спиновая плотность оказывается на атоме водорода. Обменное взаимодействие неспаренного электрона, находящегося на (главным образом, на С и С ), с парой электронов, находящихся на ф,, снижает энергию v по сравнению с Два атома водорода, связанные с концевым атомом углерода, неэквивалентны по симметрии, но до сих пор мы не говорили ни о каких эффектах, которые могли бы сделать их неэквивалентными с точки зрения распределения спиновой плотности. Такая неэквивалентность выявится с введением обменной поляризации, затрагивающей заполненные молекулярные а-орбитали. [c.28]

    По определению Л.Д. Ландау, фазовым переходом второго рода в общем смысле считается точка изменения симметрии. Иными словами, в такой точке скачкообразно изменяется упорядоченность системы. Поскольку вблизи точки фазового перехода второхо рода свойства фаз мало отличаются друг от друга, возможно образование зародышей большого размера одной фазы в другой. Такие зародыши называются флуктуациями [14]. При этом существенно изменяются динамические свойства системы, что связано с очень медленным рассасыванием флуктуаций. В многокомпонентных нефтяных системах под флуктуациями понимаются образующиеся ассоциаты нового структурного уровня. Благодаря силам обменного взаимодействия рассасывание таких флуктуаций, то есть спонтанный разрыв межмолекулярных связей, имеет существенно меньшую вероятность, чем их образование. Поэтому в точках фазовых переходов из флуктуаций довольно быстро формируется новый уровень надмолекулярной структуры. [c.7]

    Его называют путем сверхобмена с участием мостиковых ацетатных групп. Оценки величины вклада прямого обменного взаимодействия, которое включает непосредственное перекрывание двух орбиталей атомов меди, весьма противоречивы. [c.151]

    Из проведенного выше обсуждения очевидно, что УФС-спектры относительно больших молекул содержат довольно много информации о потенциалах ионизации, энергиях колебаний ионизованной молекулы, спин-орбитальных взаимодействиях, ян-теллеровских расщеплениях и электронных обменных взаимодействиях. К сожалению, полосы часто перекрываются и появляются широкие линии с неразрешенной колебательной структурой. Примером небольшой молекулы, в спектре которой наблюдается большое число линий, служит газообразная NO. На рис. 16.13 показаны спектры этой молекулы, полученные Асбринком и сотр. [32] при разрешении ЮмэВ и источнике Не(1) и при разрешении 25 мэВ и источнике Не (II). С процедурой отнесения линий читатель может познакомиться в цитированной работе, однако даже внимательное рассмотрение рис. 16.13 показывает, что в спектре разрешены как обменное, так и спин-орбитальное расщепления. [c.346]

    Подобные отклонения можно объяснить двояко. Отказавшись от постулата 3, приходим к представлению о хемосорбции на однородной поверхности, сопровождающейся взаимодействием сорбированных частиц. Если это взаимодействие заключается во взаимном отталкивании, теплота адсорбции должна уменьшаться с увеличением степени заполнения в согласии с опытными данными. Выбрав некоторую зависимость коэффициента адсорбции Ь [связанного с теплотой адсорбции соотношением (1.6) ] от степени заполнения поверхности и подставив ее в уравнение (1.5), можем аппроксимировать таким образом любую экспериментальную изотерму адсорбции. Отталкивание хемосорбированных молекул может являться следствием квантово-механического обменного взаимодействия [9]. Силы кулоновского или диполь-динольного взаимодействия играют малую роль, так как они долнщы сказываться лишь при значительной плотности сорбированных молекул, между тем отклонения от изотермы Лангмюра (или изотермы Генри) часто становятся заметными уже при очень малых степенях заполнения поверхности. Весьма правдоподобно объяснение природы сил взаимодействия сорбированных частиц через посредство электронного газа кристаллической решетки катализатора (см. постулат 3, а также работы [9, 10]) сила такого взаимодействия незначительно уменьшается [c.17]

    Если сталкивающиеся молекулы притягиваются достаточно сильно, то при столкновении возможно образование долгоживущего комплекса, раснад которого, следующий за полным перераспределением энергии, приводит вновь к исходным молекулам, но уже в других колебательных состояниях. За образование комплексов мо кет быть ответственно сильное ван-дер-ваальсово притяжение [253], водородная связь [5171 или обменное взаимодействие [472]. В последнем случае, когда анергия связи комплекса особенно велика, можно ожидать полного статистического перераспределения энергии между степенями свободы комплекса. Что каса( Т1>[ вероятностей колебательных переходов, то они могут быть рассчитаны при атом в рамках статистической теории реакций (см. 21). [c.90]

    В существующих теориях ЯМР наличие в исследуемых системах процессов структурирования и обменных взаимодействий не учитывается. Все теории основываются на предположении случайного броуновского характера диффузии атомов. В работе [17] были внесены поправки в теорию ЯМР - введены радиальная функция распределения трансляционной диффузии структурных частиц (РФР) и особая форма потенциала межчастичных взаимодействий (ППМВ). Учет этих структурных особенностей позволяет адекватно обрабатывать экспериментальные данные импульсной ЯМР и использовать этот метод для определения динамических и структурных харакчеристик структурированных систем [c.12]

    Наиболее вероятной причиной этого явления следует считать обменное взаимодействие меди в хелатном комплексе и кадмия, находящегося на деталях топливного бака. Полагают, что растворимые хелаты кадмия уносятся с потоком топлива, а хелаты меди и железа накапливаются на фильтре. Этот вопрос изучен не полностью [34], но для применения в реактивных топливах рекомендован N.N -ди aлицилидeн-1.2-пpoпилeндиaмин, который образует легкорастворимые хелатные комплексы с металлами. Считают, что отказываться совсем от деактиваторов металла в реактивном топливе нецелесообразно. так как возможны эксплуатационные затруднения из-за смолообразования. [c.136]

    К другим обменным микропроцессам, активно определяющим механизмы нефтегазоотдачи в пластах с различными геолого-фи-зическими условиями, следует отнести обменное взаимодействие между рабочими агентами на водной основе (полимерными, ми-целлярными, щелочными растворами) и пластовой минерализова-ной водой. Особое место занимают микропроцессы, связанные с воздействием традиционными рабочими агентами в породах-коллекторах повышенной глинистости и тем более в коллекторах нового типа — аргиллитах, которые впервые встречены в баженовской свите Западной Сибири. [c.161]

    Образование триплетных эксиплексов было обнаружено в полярном растворителе — ацетонитриле между радикалами акридина, азафенантреиа и катион-радикалами доноров электрона (дифенила, нафталина, нафтола). Такие эксиплексы образуются в результате реакции переноса электрона с донора на возбужденные катионы гетероароматических соединений. Спектры поглощения наблюдаемых триплетных эксиплексов являются суммой спектров свободных радикалов акцептора и катион-радикалов донора (рис. 65). Прочность данных триплетных эксиплексов в основном определяется не кулоновским, а обменным взаимодействием, поскольку они наблюдаются в полярной среде. [c.178]

    Проявление обменного в.заимодействия в спектрах ЭПР. Если парамагнитные частицы находятся в очень близком соседстве, так что электронные облака неснарепных электронов перекрываются, может происходить обмен электронами между отдельными частицами. В жидкой фазе обмен электронами происходит во время столкновений пара магнитных центров. Если частота обмена невелика, обменное взаимодействие приводит к уишрепию спектра, так как парамагнитные центры находятся в различных быстро изменяющихся локальных нолях. Если частота обмена высока, разброс в величинах локальных магнитных полей для разных частиц перестает проявляться. Электрон оказывается в некотором усредненном магнитном поле. Благодаря этому ширина линии уменьшается, происходит так называемое обменное сужение спектра. Б условиях быстрого обмена в спектре перестает проявляться н разброс локальных нолей, связанный с различной ориентацией спинов собственных ядер парамагнитных центров. Это приводит к исчезновению сверхтонкой структуры. Так как при обмене осуществляется сильное спнн-сниновое взаимодействие, ири этом резко уменьшается время релаксации. [c.236]

    Установлено, что энергия активации вязкого течения увеличивается с понижением ПИ и роста СЭ соответствующих систем. На основании представленных результатов можно сделать неожиданный вывод, что вязкое течение полисопряженных ньютоновских углеводородных жидкостей связано с сильным химическим обменным взаимодействием или процессом переноса заряда. Таким образом, ньютоновское ючение жидкостей, содержащих п-электронные ароматические или непредельные соединения, связано с коллективным химическим взаимодействием частиц. Чем выше энергия химического взаимодействия молекулярных орбиталей, тем выше вязкость жидкости. Изложенное не прогиворе-чит существующим взглядам на природу жидкого состояния, как системы слабых химических связей [35] и решеточной теории растворов полимеров [c.102]

    Между соседними магнитно-активными атомами в кристаллической решетке существует элеетрическое обменное взаимодействие, имеющее квантово-механическую природу. Силы обменного взаимодействия стремятся ориентировать магнитные моменты соседних атомов в одном направлении (параллельно или антипараллельно), но этому препятствует тепловое движение, которое дезориентирует магнитные моменты атома. Мерой сил обменного взаимодействия является обменный интеграл 2 (рисунок 1.3.3), величина и знак которого зависят от отношения межатомного расстояния а к радиусу г незаполненной оболочки. При а/г>Ъ обменный интеграл положителен и силы обменного взаимодействия стремятся выстроить магнитные моменты соседних атомов параллельно. [c.22]

    Однако при а/г > 6,6 энергия обменного взаимодействия настолько мала, что практически Гфи сколь угодно низких температурах эта энергия меньше энергии тепловых колебаний атомов, поэтому магнитные моменты атомов располагаются с равной вероятностью по всем возможным направлениям (рисунок 1.3.4, а), и результирующий магнитный момент равен нулю. Такие вещества называются парамагнитными (х 10 ... 10 . Если па-рамагншное вещество внести в магнитное поле, то появляется преимущественная ориентирювка магнитных моментов атомов вдоль направления поля и вследствие этого некоторый результирующий положительный маг- [c.22]

    В некоторых соединениях, у которых магнитные моменты соседних атомов неодинаковы по величине, отрицательное обменное взаимодействие также ориентирует магнитные моменты соседних атомов антипараллельно, но при этом полной компенсации не происходит (рисунок 1.3.4, г). Такие вещества назьгааются ферршшгнитными. По свойствам они весьма близки к ферромагнитным (х )  [c.24]

    Итак, под действием сил обменного взаимодействия даже при отсутствии внепшего магнитного поля спиновые магнитные моменты атомов ферромагнитного вещеспъа выстраиваются в одном направлении. Направление самопроизвольной намагниченности определяется строением кристаллической решетки ферромагнитного материала или сплава. [c.24]

    Таким образом, молекулы углеродистого вещества в условиях низкотемпературной прокалки связаны между собой не столько в виде полимерных цепей или кристаллитов, и не столько химическими связями полимерного типа, сколько обменными взаимодействиями, вызываемыми неспаренными электронами углеродных атомов и молекул. Именно эти взаимодействия, имеющие не направленное, а радиально-объемное действие,и являются причиной "аморфности", " урбострат-ности", "неупорядоченности" строения углеродистых материалов описываемого типа. По-видимому,такая структура коксов более доступна для внешнего воздействия - например, влияния кислорода воздуха или других газов. Такая инаюрмация в опубликованной литерату-86 [c.86]


Смотреть страницы где упоминается термин Обменное взаимодействие: [c.151]    [c.151]    [c.204]    [c.171]    [c.254]    [c.92]    [c.99]    [c.218]    [c.245]    [c.927]    [c.18]    [c.23]    [c.28]   
Смотреть главы в:

Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8 -> Обменное взаимодействие

Растворитель как средство управления химическим процессом -> Обменное взаимодействие


Основы и применения фотохимии (1991) -- [ c.120 ]

Химический энциклопедический словарь (1983) -- [ c.396 ]

Химия твердого тела Теория и приложения Ч.2 (1988) -- [ c.2 , c.136 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.396 ]

Введение в теорию атомных спектров (1963) -- [ c.156 ]

Теория и практические приложения метода ЭПР (1975) -- [ c.268 , c.272 ]

ЭПР Свободных радикалов в радиационной химии (1972) -- [ c.23 , c.179 ]

Теоретические основы органической химии (1973) -- [ c.40 ]

Краткая химическая энциклопедия Том 2 (1963) -- [ c.522 ]




ПОИСК





Смотрите так же термины и статьи:

Атомы инертных газов. Обменные трехчастичные взаимодействия первого и второго порядков

Бирадикалы обменное взаимодействие

Взаимодействие А -f- ВС, не приводящее к обмену

Взаимодействие между обменом глюкозы и липидным обменом липиды как аэробный источник энергии

Взаимодействие посредством двухпионного обмена

Галогениды щелочных металлов. Обменные трехчастичные взаимодействия первого и второго порядков

Гиббса взаимодействия ионита с раствором при отсутствии ионного обмена

Глюкоза обмен, взаимодействие с обменом липидов

Диаграммы состояния двойных жидких систем определение функции при наличии обменного взаимодействия

Динамика обменных взаимодействий в азотокисных бирадикалах

Дипольное взаимодействие электронов в азотокисных бирадикалах Знак обменного взаимодействия

Ионный обмен с учетом дополнительных взаимодействий в жидкой фазе

Ионный обмен смеси без учета дополнительных взаимодействий

Количественный физико-химический анализ двойных жидких систем с обменным взаимодействием

Константы обменного взаимодействия

Константы обменного взаимодействия, обменный интеграл

Обменная 2М-спектроскопия в системах со спин-спиновым взаимодействием

Обменная спектроскопия взаимодействием

Обменное взаимодействие диацетиленов с гипогалогенитами щелочных металлов

Обменное взаимодействие электроно

Обменное взаимодействие электроно скорость и спектры ЭПР

Обменное взаимодействие электронов

Обменное межмолекулярное взаимодействие

Обменные взаимодействия в азотокисных бирадикалах

Обменные взаимодействия и угловые спиновые конфигурации в шпинелях

Перенос энергии в результате обменного взаимодействия (при перекрывании орбит)

Полиамиды обменное взаимодействие, механизм

Полные трехчастичные обменные взаимодействия и стабильность кристаллов

Процессы в растворах обменного взаимодействия

Реакции соединения, взаимодействия и обмена

Регуляция обмена веществ. Сложности взаимодействия с окружающей средой и адаптация к ней

Роль обменных взаимодействий

Селена изотопный обмен взаимодействия

Спиновые обменные взаимодействия в монослойных пузырька

Термодинамика взаимодействия ионита с чистым растворителем и растворами (ионный обмен отсутствует)

Трансаннулярные обменные взаимодействия

Электронное обменное взаимодействие

Энергия обменного взаимодействия



© 2025 chem21.info Реклама на сайте