Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозионная стойкость высокохромистых сталей

    Хром улучшает механические свойства, износостойкость, повышает коррозионную стойкость и делает сталь жароупорной. Однако высокохромистые стали плохо свариваются, что ограничивает их применение. [c.20]

    Содержание хрома более 12% повышает коррозионную стойкость стали. К таким сталям относится высокохромистая нержавеющая сталь с содержанием 17—30 /о хрома. [c.61]


    Максимальная коррозионная устойчивость высокохромистых сталей в растворах будет наблюдаться при максимальном содержании хрома и минимальном содержании углерода. Основная причина понижения стойкости при повышении содержания углерода связана не столько с возникновением гетерогенности за счет выделения карбидов хрома, сколько с вызываемым карбидообразованием понижением содержания хрома в твердом растворе. [c.486]

    Циркуляция осуществляется при помощи центробежных насосов, рабочие части которых изготовлены из высокохромистой стали Х28. Коррозионная стойкость этой стали в данных условиях вполне удовлетворительна, но сопротивляемость эрозионному износу недостаточна. [c.146]

    Когда коррозия горячими нефтепродуктами является более сильной, повышение содержания кремния мало отражается на стойкости высокохромистой стали. На рис. 2, представляющем результаты, полученные на трех различных нефтеперегонных заводах, показано совершенно определенное соотношение между содержанием хрома и коррозионными потерями независимо от содержания кремния. [c.697]

    Влияние золовых отложений на коррозию различных котельных сталей различно. Известно, например, что стали, содержащие хром, являются чувствительными к хлоридам щелочных металлов. Поэтому окисление высокохромистых сталей под влиянием содержащих хлор золовых отложений протекает ближе к кинетическому режиму окисления,, чем окисление сталей с умеренным содержанием хрома. По общему количеству хрома в стали можно оценить его действие на ускорение процесса высокотемпературного окисления. Количественную оценку коррозионной стойкости стали можно проводить только на основе соответствующих экспериментов. Следовательно, выбор металла для высокотемпературных поверхностей нагрева, исходя из его коррозионной стойкости, должен быть связан с коррозионной активностью в отно- [c.11]

    Борирование в герметических ящиках-муфелях с применением порошка аморфного бора или ферробора в вакууме или в среде водорода или углеводородов. Длительность процесса 20 ч, температура 1000° С. Достигаемая глубина борированного слоя до 0,45 мм. Борированные стали обладают повышенной износостойкостью при нагреве до 900° С. Борирование повышает одновременно коррозионную стойкость углеродистых высокохромистых и аустенитных сталей. [c.107]

    Наибольшую стойкость к коррозионному разрушению при высоких температурах показали высокохромистые стали, хотя они и подвержены межкристаллитному разрушению. [c.174]

    На основании коррозионных испытаний азотированных аустенитных и высокохромистых сталей в проточной воде, перегретом паре, кипящей воде, керосине, газолине, горючем масле и других средах было сделано заключение, что коррозионная стойкость азотированных нержавеющих сталей примерно равна стойкости необработанной сердцевины [c.118]


    По ГОСТ 2176—43 состав фасонных отливок из высокохромистой стали, которые отвечают требованиям коррозионной стойкости, жаростойкости и износостойкости, должен соответствовать дан- [c.17]

    Элементарная сера начинает разрушать черные металлы при температурах выше 200 °С. Скорость коррозии при температурах выше 600°С становится пропорциональной парциальному давлению паров серы в степени п, причем п варьирует от 7б до /2. В ряду возрастания коррозионной стойкости к действию расплавленной и парообразной серы металлы располагаются следующим образом серебро С никель, медь < железо, углеродистая сталь < высокохромистая сталь < хром < хромоникелевая сталь < хастеллой < < алюминий < золото. [c.132]

    Содержание хрома более 12% повышает коррозионную стойкость стали. К таким сталям относится высокохромистая нержавеющая сталь с 17—30% хрома. При незначительном содержании углерода (до 0,10%) эта сталь не испытывает фазовых превращений (а у) и относится к стали ферритного класса. [c.71]

    Хром улучшает механические свойства, износостойкость, повышает коррозионную стойкость и делает сталь жаропрочной. Однако высокохромистые стали плохо свариваются, что ограничивает их применение. Никель повышает прочность, пластичность, коррозионную стойкость, но является дорогой дефицитной добавкой, часто применяется с добавками хрома. Молибден улучшает прочностные свойства, особенно при высоких температурах, повышает коррозионную стойкость к хлорсодержащим веществам, но является дорогим материалом. Марганец повышает прочностные свойства стали при содержании 10—15% марганца сплавы приобретают высокую сопротивляемость ударам и истиранию (эрозии). Кремний увеличивает коррозионную стойкость, жаростойкость, но резко снижает вязкость и затрудняет обрабатываемость сталей. Титан, ниобий, вольфрам увеличивают прочность сталей. Ванадий увеличивает пластичность, улучшает свариваемость, в сочетании с другими легирующими элементами резко улучшает конструкционные свойства -стали. [c.20]

    В результате исследования двойных и тройных эвтектических смесей сульфатов подобрана соляная ванна, которая может служить теплоносителем при температурах 400—600°. Изучение коррозионной активности указанной ванны показало, что скорость коррозии малоуглеродистой стали в ней не превышает 1,5 мм/год. Коррозионная стойкость хромистых и высокохромистых сталей в расплавленной сульфатной смеси повышается с увеличением содержания хрома. Коррозионная стойкость хромоникелевой стали марки 1Х18Н9Т примерно такая же как и стали Х28. Наиболее коррозионно стойким из исследованных материалов показал себя сплав, содержащий 80"/о никеля и 20"/о хрома. [c.102]

    Высокохромистые чугуны приобретают коррозионную стойкость только при ус,яовии содержания хрома в твердом растворе (не считая хрома, связанного с углеродом чугуна) в количестве, достаточном для достижения устойчивости согласно правилу п/8, т. е. не менее 11,7% масс. Так как наибольшее распространение получили чугуны с 28—35% Сг и 1,0—2,2% С, значительная часть углерода чугунов связывается в карбиды, преимущественно типа СгуСз, на образование которых расходуется 10— 22% Сг (1% С связывает около 10% Сг). Таким образом происходит сильное обеднение твердого раствора хромом, и в большинстве случаев содержание свободного хрома в высокохромистых чугунах не выходит за пределы первого порога устойчивости. Этим объясняется сравнительно невысокая коррозионная стойкость этих чугунов по сравнению с высокохромистыми сталями. При увеличении содержания хрома свыше 35— 36% твердость высокохромистых сплавов значительно повышается, что ухудшает их обрабатываемость. Кроме того, при содержании хрома свыше 40% эти чугуны становятся хрупкими вследствие выделения прн медленном охлаждении 6-фазы (интерметаллического соединения РеСг). [c.243]

    Высокохромистые двухфазные аустенитно-ферритные стали обладают высокой коррозионной стойкостью, коррозионно-усталостной про шостью, хорошими механическими характеристиками. Благодаря высокой стойкости к коррозии под действием кавитации из этих сталей целесообразно изготовлять детали насосов высокой подачи для перекачки морской воды. Двухфазные аустенигно-ферритные нержавеющие стали находят широкое применение в химической и нефтехимической промышленности в качестве коррозионно-стойких конструкционных материалов. Стойкость к коррозии в морской воде этих сталей сравнима со стойкостью аустенитных сталей, т.е. достаточно высока, а сравнивае-мость и обрабатываемость лучше. [c.20]

    По уменьшению эффективной работы пары неравномерной аэрации металлы располагаются в ряд цинк, хром, углеродистая сталь, серый чугун, кадмий, алюминий, медь, свинец, нержавеющая высокохромистая стапь, висмут, цирконий, тантал, титан. Из приведенного перечня следует, что весьма перспективный конструкционный материал для подземных сооружений - это титан, который, помимо высоких механических свойств, малой плотности, обладает также хорошими коррозионными характеристиками высокой общей коррозионной стойкостью и высокой устойчивостью к иону хлора, а также низкой чувствительностью к образованию пар дифференциальной аэрации. Из приведенных данных можно также сделать предположение о целесообразности применения циркония в качестве защитного покрытия на стальных изделиях в почвенных условиях. [c.48]


    Наиболее распространенным и рекомендуемым режимом термической обработки высокохромистой стали является отжиг при 760—780° С с последующим охлаждением на воздухе или вместе с печью. В результате такой термообработки сталь приобретает наиболее равно-несную структуру в виде ферритокарбидиой смеси, характеризующейся благоприятным сочетанием прочности и коррозионной стойкости. Иногда применяется также нагрев и выдержка стали при 850—900° С в течение нескольких часов с последующим быстрым охлаждением. Ири этом наблюдается растворение карбидов и несколько повышается пластичность. [c.61]

    Стачи Х25Т и Х28 являются окалиностойкими, и их используют для изготовления печной арматуры, цементационных ящиков и других металлоконструкций, эксплуатирующихся в газовых средах при температурах до 900-1100 °С. Следует иметь в виду, что стойкость этих сталей к газовой коррозии сохраняется только в случае действия на метачл минимальных постоянных или переменных механических нагрузок. Высокохромистые стали, кроме того, обладают значительной стойкостью в коррозионных средах, содержащих сероводород и сернистый ангидрид, при высоких температурах. Стали этой группы, содержащие 25-28 % Сг, проявляют склонность к МКК аналогично сталям с 17 % Сг при высоких скоростях охлаждения с температур > 950 °С, что связано с выделением карбидов и обеднением границ зерен Сг. Стимулирующее влияние оказывает также образование при определенном составе стали некоторого количества мартенсита по границам зерен. Для предотвращения МКК в стали вводят Т1 в количестве > 5 х % С или N5 в количестве > 10 х % С. В случае изготовления из высокохромистых сталей, не содержащих Т1 и КЬ, сварной аппаратуры, эксплуатирующейся в жестких коррозионных средах, ее подвергают дополнительному отжигу при 760 - 780°С с последующим охлаждением в воде или на воздухе. При этом вследствие диффузионных процессов выравнивается концентрация Сг в зерне и сопротивление стали МКК повышается. [c.20]

    Другим характерным примером может служить плакирующее покрытие из ферритной высокохромистой стали Х25Т. Эта сталь во многих агрессивных средах по коррозионной стойкости идентична или даже превосходит хромоникелевые аустенитные стали. Однако сталь Х25Т имеет низкие пластичность и ударную вязкость, что существенно ограничивает область её применения. С другой стороны, двухслойные листы состава "сталь Х17Т-СтЗ" и "сталь Х25 - Ст 3"обладают высокими пластичностью (5 = 25-30 %) и ударной вязкостью (а = 0,8 - 1,1 МДж/ м ). Сварные соединения из этих двухслойных сталей по пластичности не уступают основному металлу, а их ударная вязкость лишь немного ниже (а =0,71 - 0,79 МДж/м ). [c.66]

    Иными словами, добавка меди к низколегированным сталям, содержавшим хром, уменьшала коррозию примерно на 1/3. Стали, легированные хромом, как будто уже становятся чувствительными к содержанию углерода. Так, при сравнении коррозионной стойкости сталей 9 и 15 (0,1% С), с одной стороны, и сталей 10 и 16 (0,2% С) с другой — было обнаружено, что последние корродируют с несколько большей скоростью (индексы коррозии 72,5 и 65,0 мк1год). Эта разница, по мнению авторов, возможно, связана с известным влиянием углерода в высокохромистых сталях, которое сводится к удалению хрома из твердого раствора и выделению его в виде карбидов хрома по границам зерен. [c.248]

    В отличие от других литейных коррозионно-стойких сплавов сталь 0Х12НДЛ обладает достаточно высокими технологическими свойствами, что позволяет применять ее для литья крупногабаритных деталей. Высокохромистые стали ферритного и полуферритного классов также отличаются сравнительно хорошими литейными свойствами, но обладают низкой эрозионной стойкостью (см. табл. 70 и 71) и повышенной хрупкостью. Эти стали применяют иногда в машиностроении для изготовления малогабаритных деталей и, в частности, для литья по выплавляемым моделям. [c.204]

    Коррозионностойкие сплавы. Как отмечалось выше, наиболее устой чивы по отношению к коррозионному растрескиванию аустенитные спла вы с высоким содержанием никеля (порядка 45 %), а также феррнтные высокохромистые стали, не содержащие никеля. Указывается на высокую коррозионную стойкость высокочистой хромомолибденовой стали 26 Сг 1 Мо (0,002 % С, 0,008 % N) при испытании на коррозионное растрескивание в кипящем 45 %-ном Mg la. Эта сталь не разрушалась в течение 1200 ч, в то время как аустенитные стали 18 Сг 10 Ni и I8 rl2Ni3Mo разрушались через 2 и 4 ч соответственно [125]. [c.116]

    Стали типа 18Сг8Н1 широко используют в качестве слоя, нанесенного сваркой на обычные стали или в виде отливок. Для более жестких условий применяют высокохромистые стали 25 гl2Ni или 25Сг20К1 и др. [51, с. 306]. Литая сталь 1,4 С 35,3 Сг показала высокую коррозионную кавитационную стойкость в воде и в растворе азотной кислоты [41, с. 140]. Титан является многообещающим конструкционным материалом. [c.119]

    Толщина плакирующего коррозионностойкого слоя обыч- но Составляет 5—10% общей толщины двуслойного листа (и обычно не превышает 0,5—1 мм). Основой является более доступный сплав, удовлетворяющий требованиям по-механическим и технологическим свойствам. Промышленностью освоен (главным образом методом горячей металлургической прокатки) и выпускается ряД композиций биметаллических листов, например медь по стали 3 никеле пО стали 3 нержавеющая сталь (высокохромистая или хромоникелевая) по стали 3. В авиации самое широкое применение нашло плакирование высокопрочных алюминиевых, сплавов более коррозионностойким алюминием повышен- ной чистоты. При правильно выполненной технологии соединений (в частности, сварных) двуслойных металлов коррозионная стойкость конструкций не отличается от стойкости плакирующего металла, а механические свойства1 близки к стойкости металла основного слоя. [c.325]

    Титан почти всеми своими качествами отвечает данному ему имени. Он прочен, теплостоек, обладает высокой коррозионной стойкостью. На пего не действуют ни азотная кислота, ни царская водка, ни другие окислители. Однако он корродирует под действием соляной и серной кислот. Но совсем небольшая добавка палладия (до 0,1%) делает титан металлом, стойким против H2SO4 и НС1. Добавки (до 1 %) палладия повышают также химическую стойкость некоторых сортов нержавеющей и высокохромистой стали. [c.274]

    Хром улучшает механические свойства, износостойкость и про-каливаемость стали. Добавление хрома в достаточном количестве повышает коррозионную стойкость стали и делает ее жароупорной. Часто применяется совместно с никелем. Хром повышает склонность сталей к отпускной хрупкости. Высокохромистые стали плохо свариваются, что ограничивает их применение. [c.28]

    С целью выбора материала аппарата для прокаливания шихты изучена коррозионная стойкость различных образцов сталей 1Х18Н9Т, Х25Т, ЭП-54, ЭП-53, ЭИ-428, ЭИ-943, ВТ-1. Наибольшей стойкостью обладает высокохромистая сталь Х25Т скорость ее коррозии 0,8—1,0 мм в год. [c.129]

    Применение двухслойных металлов кроме экономии дефицитных металлов и сплавов дает возможность получить такое сочетание нужных свойств, которого нельзя достичь при использовании какого-либо одного металла. Примером может служить двухслойная сталь Ст. 3 -Ь 0X13. Сама по себе высокохромистая сталь 0X13, несмотря на удовлетворительную коррозионную стойкость, в некоторых средах не является эффективным конструкционным материалом из-за низкой ударной вязкости и хрупкости сварных швов. В сочетании же со сталью Ст. 3, 15К или 20К сталь 0X13 представляет собой материал с высокими механическими и антикоррозионными свойствами. [c.47]

    Позднее Химушин с сотрудниками [18] предложили использовать для футеровки колонн синтеза стали, содержащие 18% Сг, 8% N1 и 4% Мо. Обширные исследования коррозионной стойкости различных материалов в условиях синтеза карбамида и влияния отдельных факторов на коррозию нержавеющ,их сталей были проведены в Государственном институте азота под руководством Кра-сильщикова [19. Обнаружили, что среди испытанных материалов наиболее высокой стойкостью обладают тантал, плавленый диабаз и высокохромистый чугун (34—35% Сг 2—2,2% С 1,7—2% 51). [c.296]


Смотреть страницы где упоминается термин Коррозионная стойкость высокохромистых сталей: [c.151]    [c.151]    [c.203]    [c.741]    [c.97]    [c.244]    [c.62]    [c.229]    [c.135]    [c.15]    [c.476]    [c.527]    [c.195]    [c.88]    [c.225]    [c.8]    [c.474]    [c.229]    [c.47]   
Справочник азотчика (1987) -- [ c.330 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозионная стойкость

Коррозионная стойкость сталей

Сталь стойкость



© 2025 chem21.info Реклама на сайте