Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технология соединений

    Соединения с высокой реакционной способностью, относительно легко превращаемые в различные промежуточные и целевые продукты современной технологии соединений алифатического ряда. [c.137]

    Таким образом, прямое хлорирование парафиновых углеводородов приобрело бы в технологии соединений жирного ряда значение, сравнимое только с положением, которое занимают реакции сульфирования или нитрования в ароматическом ряду. [c.531]


    Е. Причины, препятствовавшие широкому развитию реакции хлорирования в технологии соединений жирного ряда [c.531]

    Получение соединений рубидия и цезия из любых сырьевых источников — трудная задача. Почти всегда приходится решать задачу их разделения и отделения от близкого по свойствам и обычно преобладающего в сырье калия. Все это приближает технологию соединений рубидия и цезия к технологии рассеянных элементов. [c.119]

    В большинстве случаев трудную задачу разделения приходится решать и при получении солей цезия, причем почти всегда она осложняется тем, что содержание цезия в любом комплексном сырье в десятки раз меньше рубидия. Однако промышленные запасы поллуцита дали основания для разработки и организации рудной технологии соединений цезия на основе использования этого минерала. С нее мы и начнем описание химико-технологических (гидрометаллургических) процессов переработки различного сырья на соединения рубидия и цезия. [c.119]

    Получение солей рубидия и цезия особой чистоты. Технология соединений рубидия и цезия располагает достаточным числом методов, позволяющих выделять рубидий и цезий из растворов и получать их технические и реактивные соли. Сочетая различные методы или повторяя их многократно, можно получать и химически чистые соединения. Значительно сложнее обстоит дело с получением особо чистых солей. До сих пор для этого наиболее часто применяли осаждение труднорастворимых солей и фракциони-зованную кристаллизацию из водных и неводных растворов [244]. Лримеси из растворов могут попасть в твердую фазу либо вместе с жидкой фазой, захваченной кристаллами, либо вследствие поверхностной адсорбции, либо в результате образования твердых растворов [10, 245, 246]. [c.147]

    Технология соединений циркония. Промышленные способы раз ложения циркона основаны на сплавлении его со щелочами или содой спекании с содой, известью, известняком или мелом, кислыми фтори дами или комплексными фторосиликатами щелочных металлов. Наи большее распространение получили методы сплавления с едким нат ром, спекания с мелом и гексафторосиликатом калия. Способы разло жения циркона сплавлением со щелочами, спеканием с карбонатами щелочных и щелочноземельных металлов могут быть объединены в одну группу вследствие сходства механизма реакций, протекающих при вскрытии, сходства образующихся продуктов и общности способов выделения циркония из растворов. Широкое распространение получило хлорирование, обладающее рядом преимуществ по сравнению с перечисленными выше способами. [c.313]


    В результате исключительной подвижности хлора, связанного с серой, сульфохлориды обладают высокой реакционной способностью- Этим объясняются мно гочисленные их превращения, дающие вещества, которые являются важными промежуточными и конечными продуктами технологии соединений алифатического ряда. Таким образом, реакция сульфохлорирования прокладывает путь к химическому использованию парафиновых углеводородов путем применения реакции замещения и служит убедительным примером того, что малая реакционная способность парафинов не является общим правилом, не знающим исключений. [c.356]

    Напротив того, следовало бы стремиться производить эти ценные для технологии соединений жирного ряда высшие спирты из парафиновых углеводородов (например, из когазина, получаемого в синтезе Фишера—Тропша). Последние следовало бы хлорировать и затем заместить галоид первичного хлористого алкила на такую функциональную группу, которая дала бы возможность перейти к желаемому конечному продукту или полупродукту наиболее экономичным путем. Так, например, полученный прямым хлорированием хлористый алкил с соответствующим числом атомов углерода можно гидролизовать в спирт и заменить таким образом выспите спирты, все еще добываемые из естественных продуктов. [c.531]

    Технология изготовления. Конструкция теплообменника зависит от требований технологии производства, в частности от технологии соединения труб с трубными досками. Наиболее перспективными, по-видимому, являются гелиеводуговая сварка и высокотемпературная пайка тугоплавким припоем — сплавом железа, хрома, никеля, кремния и бора с точкой плавления около 1100° С. Для осуществления пайки твердым припоем необходима атмосфера водорода при отсутствии влаги (см. гл. 2). В некоторых теплообменниках применена сварка, в других используется пайка, некоторые теплообменники были сначала сварены, а затем пропаяны. Для выявления лучшей технологии были проведены испытания на длительную прочность соединений. Обнаружилось, что повреждения были одинаковыми как в случае сварки, так и в случае пайки — в обоих вариантах имели место случайные свищи. Одной из наиболее существенных конструктивных проблем является вопрос концентрации напряжений в основании сварного шва в трубной доске. На рис. 2.5 показана фотография микрошлифа такого шва, на которой ясно видны места сильной концентрации напряжений на конце трещины, упирающейся в сварочный шов. Хотя влияние такой концентрации напряжений можно уменьшить путем развальцовки трубы в трубной доске, последнюю операцию не всегда легко осуществить при малом диаметре труб. Возникающие в стенке трубы при вальцовке остаточные напряжетшя сжатия имеют тенденцию к релаксации при высоких температурах, особенно в условиях переменных температурных режимов, связанных с резкими изменениями температуры жидкости, текущей в трубах. Следовательно, имеются весьма веские доводы в пользу припаивания труб к трубной доске твердым припоем. При последнем способе получается хорошее со всех точек зрения металлическое сцепление трубы с трубной доской. Было выявлено, что если трубы свариваются, а затем еще и пропаиваются, то при этом достигается высокая монолитность конструкции. Действительно, более 7000 сваренных, а затем пропаянных соединений труб с трубной доской были подвергнуты длительным испытаниям, при этом не обнаружилось ни одного свища [14]. [c.271]

    Иисима T. Высокоэффективные химические источники тока, в которых использованы соединения фтора.— В кн Новое в технологии соединений фтора. Поц ред. Н. Исикава. М. Мир, 1984, с. 132-158. [c.690]

    Сакураи Ц., Ивасаки М. Применение фтора в областях, связанных с энергией.— В кн Новое в технологии соединений фтора. Под ред. Н. Исикава. М. Мир, 1984, с. 25-155. [c.692]

    Изложены [10, 12] теоретические основы технологии соединений азота с обработкой больших объемов газа под повышенным давлением, в том числе разделения газов при глубоком охлаждении полной очистки от примесей и каталитического превращения абсорбции конденсации использования энергии реакций и сжатого газа. Рассмотрено использование [61, 108, 136] азотной кислоты и аммиака в процессах азотнокислотного разложения фосфатов и при аммони-зации кислот с анализом равновесия и пересыщений в многокомпо-нентных системах скоростей растворения и кристаллизации превращений и тепловых эффектов при нейтрализации выведения примесей и т, д. [c.5]

    Очень большое значение для технологии соединений лития имел метод термического обогащения (декрипитация) сподумена, основанный на использовании его монотропного Р-перехода. Идея использования этого превращения очень проста. Так как в отличие от твердого а-сподумена -сподумен хрупок и легко измельчается, а его образование сопровождается расширением кристаллов минерала во всех [c.32]


    H2SO4 получались растворимые сульфаты лития и других щелочных элементов, а также в большом количестве сульфат алюминия. Во всех случаях первоначально из растворов выделяли калиевые квасцы, первые фракции которых были обогащены менее растворимыми квасцами рубидия и цезия, а затем, после сложной очистки растворов, осаждали Ь12СОз. В последующий период развития технологии соединений лития главные варианты сернокислотного метода переработки лепидолита были усовершенствованы и частично упрощены [118]. [c.37]

    Однако, как отмечено выше, сернокислотную схему переработки сподумена удалось применить непосредственно к его рудам. Это большое достижение в технологии соединений лития. С переработкой же сподумена по известковой схеме дело обстоит значительно сложнее.Если мыслимо устранить частные недостатки (заменить многостадийную упарку растворов LiOH селективным осаждением лития из разбавленных растворов [1121, преодолеть процессы схватывания шлама), удешевить ее за счет комплексного использования других щелочных элементов, то возможности для существенного преодоления трудностей, связанных с разложением минерала, ограничены. Отсюда настойчивые высказывания [10, 137] о том, что известковую схему целесообразнее применять к переработке не сподумена, а лепидолита. Действительно, лепидолит хорошо спекается с СаСОз при относительно низкой (900— 950°) температуре, спеки легко выщелачиваются. [c.47]

    Переработка лепидолита. Перерабатывая сподумен и другие силикатные минералы лития, необходимо учитывать возможность попутного извлечения рубидия и цезия даже в тех случаях, когда они присутствуют не в основных минералах, а в сопутствующих минералах промышленных концентратов. Тем более важно попутно извлекать рубидий и цезий из лепидолита — из самого богатого совместного сырьевого источника. Однако из многочисленных методов переработки лепидолита (описанных в связи с технологией соединения лития) только немногие содержат указания об использовании их с целью получения соединений рубидия и цезия в качестве побочных продуктов производства. К ним относятся методы, основанные на разложении серной кислотой или смесью H2SO4 + СаРг, а также методы сплавления и спекания [7]. При кислотном разложении рубидий и цезий всегда переходят в раствор [196, 197]. Кислотное разложение рассчитано на получение растворов сульфатов щелочных элементов, что предопределяет в значительной степени выбор пути выделения рубидия и цезия. Обычно это фракционированная кристаллизация квасцов. От квасцов через карбонаты можно перейти к хлоридам, в дальнейшем осаждать рубидий и цезий в виде хлоростаннатов, хлороплюмбатов и иными путями, а чистые соединения цезия получать через sslSba lgl [7, 8]. Известно несколько вариантов подобной переработки лепидолита, основанных на его разложении серной кислотой после предварительного сплавления при 1090°. Лучшие из них разработаны Т. Кеннардом и А. Рамбо [196] и Е. С. Бурксером [198]. [c.126]

    Лит Доналдсон Н, Химия н технология соединений иафталинового ряда, пер с англ, М, 1963, Эфрос Л С, Горелик М В, Химия н технология промежуточных продуктов. Л, 1980. Г И Пуца. [c.141]

    Гидрометаллургич. операции могут сочетаться также с процессами газовой металлургии, напр, получением хлоридов или фторидов. Так, образовавшиеся при переработке рудных концентратов хлориды 2г и НГ могут растворяться в воде н перерабатываться далее гидрометаллургич. методами. Полученные по обычной гидрометаллургич. технологии соединения V/ м. б. превращены в используемый далее для получения металла. [c.564]


Библиография для Технология соединений: [c.268]    [c.150]    [c.513]    [c.74]    [c.76]    [c.331]    [c.672]    [c.242]    [c.242]    [c.195]    [c.196]    [c.356]   
Смотреть страницы где упоминается термин Технология соединений: [c.622]    [c.671]    [c.688]    [c.35]    [c.56]    [c.58]    [c.60]    [c.62]    [c.126]    [c.303]    [c.120]    [c.63]    [c.190]    [c.191]    [c.191]    [c.198]   
Смотреть главы в:

Способы соединения деталей из пластических масс -> Технология соединений

Способы соединения деталей из пластических масс -> Технология соединений

Способы соединения деталей из пластических масс -> Технология соединений




ПОИСК







© 2025 chem21.info Реклама на сайте