Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозионная стойкость сталей

    Низкое легирование незначительно изменяет коррозионную стойкость стали в морских условиях. Высоколегированные хромистые и хромоникелевые стали подвержены в морской воде местной щелевой и язвенной коррозии. Высокой коррозионной устойчивостью в морской воде обладает монель-металл (25—30% Си, остальное N1), медь и ее сплавы. [c.404]


Рис. 159. Зависимость коррозионной стойкости стали Х17Н2 в растворах уксусной, муравьиной, азотной и фосфорной кислот различной концентрации от температуры Рис. 159. Зависимость <a href="/info/109999">коррозионной стойкости стали</a> Х17Н2 в <a href="/info/264654">растворах уксусной</a>, муравьиной, азотной и <a href="/info/1028540">фосфорной кислот различной</a> концентрации от температуры
    Перспективным является также использование экономнолегированных нержавеющих сталей. Исследования влияния хрома на коррозионную стойкость сталей к углекислотной коррозии в условиях газоконденсатных месторождений Краснодарского края [28] показали, что стали с содержанием хрома 8% после оптимального режима термической обработки могут быть отнесены к группе стойких, а стали с 13% хрома — к группе совершенно стойких. [c.45]

    Как показали эксперименты в Панамском канале, содержание никеля до 5 % (при 0,1 % С) не сказывается на коррозионной стойкости стали в морской воде [45]. В первый год испытаний глубина питтингов на никельсодержащей стали была меньше, чем на стали с 0,24 % С, но при длительных испытаниях глубина питтингов на углеродистой стали была заметно меньше (после восьми лет испытаний на стали с 5 % Ni питтинг был на 77 % глубже, чем на углеродистой) [47 ]. [c.126]

Рис. 153. Зависимость коррозионной стойкости стали в нефтеочистительных установках от содержания хрома Рис. 153. Зависимость <a href="/info/109999">коррозионной стойкости стали</a> в нефтеочистительных установках от содержания хрома
    Наибольшее распространение получила сталь с содержанием- 18% хрома и 8% никеля, с небольшим содержанием углерода. Для получения максимальной коррозионной стойкости стали этого типа закаливают при 1050—1100 С с быстрым охлаждением в воду. [c.203]

    Высокая коррозионная стойкость сталей, легированных хромом, объясняется способностью хрома образовывать в окислительных средах (особенно в [c.12]

Рис. 121. Коррозионная стойкость сталей в атмосфере сероводорода при разных температурах в зависимости от содержания хрома (по Науману) Рис. 121. <a href="/info/109999">Коррозионная стойкость сталей</a> в атмосфере сероводорода при <a href="/info/50238">разных температурах</a> в зависимости от <a href="/info/1291545">содержания хрома</a> (по Науману)

    Основным потребителем хрома, молибдена и вольфрама является металлургия, где эти металлы используются при выработке специальных сталей. Как легирующий металл хром применяют для создания аустенитных нержавеющих и жаропрочных сталей и сплавов на основе меди, никеля и кобальта. Хромистые низколегированные стали (до 1,5% Сг) представляют собой материалы повышенной прочности. Инструментальные стали содержат больше хрома (до 12%), что придает им твердость и износостойкость. Содержание хрома свыше 12% обеспечивает высокую коррозионную стойкость сталей. Нержавеющие стали содержат часто кроме хрома и молибден, который увеличивает жаропрочность сталей и улучшает свариваемость. Большие количества хрома расходуются в процессах хромирования главным образом стальных изделий. Антикоррозионные и декоративные покрытия получают при нанесении хрома на подслой из никеля и меди. [c.290]

    Определение влияния легирующих элементов на коррозионную стойкость сталей  [c.89]

    В табл. 4.50 приводятся сводные данные по оценке коррозионной стойкости сталей и сплавов в различных органических средах (в основном в кислотах). [c.215]

    Коррозионную стойкость сталей, а также их длительную прочность повышают добавлением ири плавке легирующих элементов. В качестве легирующих элементов применяют хром, никель, молибден, титан и т. д. Наличие их в стали в различных сочетаниях и количествах позволяет придать ей требуемые физи-ко-механические свойства, в том числе высокую сопротивляемость коррозии в агрессивных средах при различных температурах. [c.22]

    Легирование металлов. Для улучшения свойств металлов, в том числе для обеспечения их коррозионной стойкости, в состав сплавов вводят различные вещества (легирующие добавки). Так, коррозионная стойкость стали может быть повышена введением хрома, никеля, молибдена. Коррозионная стойкость меди возрастает при добавлении к ней бериллия и алюминия. Легирование с целью повышения коррозионной стойкости применяется также для алюминия, к которому добавляют молибден, хром или никель. [c.219]

    Основным легирующим элементом нержавеющих сталей является хром, который облагораживает электродный потенциал стали и повышает ее коррозионную стойкость. Повышение коррозионной стойкости при увеличении содержания хрома в стали происходит скачкообразно. Первый порог коррозионной устойчивости достигается при концентрации хрома, равной 12,8%, что соответствует 1/8 атомной доли хрома в соста,ве стали. Для обеспечения коррозионной стойкости стали это количество хрома должно находиться в твердом растворе железа и не образовывать карбидов. При увеличении его содержания до 18% или до 25—28% достигается второй порог и наблюдается дальнейшее повышение коррозионной стойкости стали. Однако увеличение содержания хрома приводит к понижению механических свойств стали, особенно ударной вязкости, а также затрудняет сварку, вызывая хрупкость сварного шва. Поэтому стали с высоким содержанием хрома после сварки требуют термической обработки. [c.40]

    Данные по коррозионной стойкости сталей  [c.39]

    Коррозионная стойкость сталей существенно снижается вследствие ряда факторов, к которым относятся усадочные раковины, ликвационная рыхлость (неравномерное распределение примесей по всему объему), красноломкость, хладноломкость, наклеп (поверхностное упрочнение металлов) и т. д. Интенсивность коррозии возрастает также под воздействием знакопеременных нагрузок (коррозионная усталость металла). [c.13]

    Повышение коррозионной стойкости стали изменением [c.113]

    Структуры поверхностного слоя, образованного в результате импульсной обработки, имеют пониженный минимум емкости двойного электрического слоя металл-среда. Белые слои, повышая перенапряжение катодной и анодной сопряженных реакций, заметно увеличивают тафелевскую константу и уменьшают ток коррозии в связи с увеличением степени локализации валентных электронов и усилением ковалентности связи железо—углерод, которое наступает в итоге импульсного воздействия высоких температур и давлений при формировании структур в поверхностном слое. При этом рост содержания углерода в белом слое из-за улучшения его качества приводит к понижению емкости двойного электрического слоя и увеличению коррозионной стойкости стали. [c.116]

    Значительно снизить требования к коррозионной стойкости сталей или пол-/ностью их устранить позволяет применение ингибиторов коррозии. [c.146]

    Основным легирующим элементом всех типов нержавеющей стали является хром, повышающий сопротивление коррозии. Влияние хрома на коррозионную стойкость объясняется способностью образовывать на поверхности стали устойчивую защитную пассивирующую пленку окислов. Эта пленка, несмотря на очень незначительную толщину, предохраняет металл от коррозии. Образование защитной пленки па поверхности стали сопровождается повышением электродного потенциала. Изменение электродного потенциала и, следовательно, коррозионной стойкости стали происходит с увеличением содержания хрома не постепенно, а скачкообразно. [c.58]


    С увеличением содержания углерода коррозионная стойкость хромистой нержавеющей стали падает. Это объясняется тем, что коррозионная стойкость стали определяется количеством хрома, находящимся в твердом растворе. Углерод, образуя с хромом карбиды, обедняет твердый раствор, что может -привести к понижению концентрации хрома в твердом растворе ниже порога устойчивости (112% Сг). [c.59]

    Для риформирования сернистых бензиновых фракций, содержащих 0,04—0,06% мае. серы и выше, разработаны варианты реакторов (рис. 14) с защитным стаканом 20 из стали 08X13 или 1Х18Н9Т, отбойным зонтом 21 и сепарирующим устройством для улавливания продуктов коррозии, образующихся в связи с недостаточной коррозионной стойкостью стали в высокотемпературных узлах реактора. Для ввода охлаждающего газа предусмотрены штуцеры 23. [c.49]

    Алитирование хромистых сталей позволяет значительно расширить область их применения при повышенных температурах в агрессивных средах, содержащих сероводород. Коррозионная стойкость алитированных 3%-ных хромистых сталей в чистом сероводороде при 500—550 °С выше коррозионной стойкости стали 12Х18Н10Т. Для изготовления трубчатых змеевиков печей, а также для коммуникационных трубопроводов и пучков трубчатых теплообменников в США и некоторых других странах на установках гидроочисткн нефтепродуктов используют в промышленном или опытном масштабе алитированные трубы из стали 15Х5М взамен труб из дорогой стали типа 18—8. Опыт подтверждает целесообразность такой замены материала. [c.27]

    Легирование железоуглеродистых сплавов даже небольшим количеством хрома является достаточным для повышения их стойкости в атмосферных условиях. Никель в небольших количествах почти не влияет на коррозионную стойкость стали. Из низколегированных конструкционных сталей, по данным С. Г. Ве-денкниа, хромоникелемедистая сталь НЛ2 (0,7% Сг, 0,5% N1, 0,5% Си) является наиболее стойкой в атмосферных условиях. [c.183]

    Низколегированная низкоуглеродистая сталь хорошо сваривается, при сварке не образует холодных и горячих трещин, и свойства сварного соединения и участков, прилегающих к нему, близки к свойствам основного металла. Введение меди и никеля увеличивает коррозионную стойкость стали в атмосферных условиях (ЮХСНД, 15ХСНД), [c.184]

    Несмотря на высокую коррозионную стойкость сталей ферритного класса марок Х25, Х28, их применение осложняется вследствие их склонности к росту зерна и нетехнологичности. Поэтому они нашли широкое применение в виде литейных сплавов. Стали мартенситного ясса применяют либо как конструкционные (0X13, [c.41]

    Стали аустенитно-мартенситного класса относятся к высокопрочным дисперсионно-твердеющим сталям. Упрочнение этих сталей достигается в результате мартенситного превращения обработкой при низких температурах или холодной деформацией с последующим старением при температурах 350—550°С, когда происходит выделение избыточных фаз. Коррозионная стойкость сталей этого класса несколько ниже стали 1Х18Н9Т, однако выше, чем у стали 2X13, при одинаковых механических свойствах. [c.42]

    Наилучшей стойкостью против общей коррозии обладают никельсодержащие аустенитные стали. Обычно коррозионная стойкость сталей этого класса тем лучше, чем выше содержание никеля. Для создания оптимума противокоррозионных свойств аустенитный сплав должен быть закален в воде или на воздухе от температур 1050—1100 °С. Аустенитные сплавы, содержащие молибден (316, 316L, 317), обладают повышенной коррозионной стойкостью к щелевой коррозии. [c.301]

    Хромоникелевые аустенитные стали при температурах выше 400 °С склонны к межкристаллитной коррозии, суть которой заключается в выпадении по границам зерен карбида хрома. Обеднение границ зерен хромом приводит к потере коррозионной стойкости стали и к ухудшению ее механических свойств. Особенно сильно подвержена межкристаллитной коррозии сталь марки 1Х18Н9Т, широко применяемая для изготовления аппаратов нефтеперерабатывающих заводов, поэтому если аппараты работают при высоких температурах, то сталь необходимо подвергнуть стабилизирующему отжигу. Сопротивление стали межкристаллитной коррозии еще больше увеличивается при добавлении титана. [c.20]

    Основная масса алюминия используется для получения легких сплавов — дюралюмина (94% А1, остальное Си, Mg, Мп, Ре и 81), силумина (85—90% А1, 10—14% 81, остальное N3) и др. Алюминий применяется, кроме того, как легирующая добавка к сплавам для придания им жаростойкости. Алюминий и его сплавы занимают одно из главных мест как конструкционные материалы в самолетостроении, ракетостроении, машиностроении и т. п. Коррозионная стойкость алюминия (особенно анодированного) значительно превосходит коррозионную стойкость стали. Поэтому его сплавы используются как конструкционные материалы и в судостроении. С -элементами алюминий образует химические соединения — интерметаллиды (алюми-ниды) М1А1, Ы1зА1, СоА1 и др., которые используются в качестве жаропрочных материалов. Алюминий применяется в алюминотермии для получения ряда металлов и для сварки термитным методом. Алюминотермия основана на высоком сродстве алюминия к кислороду. Например, в реакции, протекающей по уравнению [c.279]

    При введении в систему Ре—С небольших добавок других металлов (легирование) общий вид диаграммы состояния сохраняется. Однако эти добавки способствуют стабилизации одних структурных составляющих и разрушению других. Так, легирование ванадием, хромом, вольфрамом стабилизирует структуру аустенита, что придает стали повышенную твердость и износоустойчиЕость. В то же время случайные включения цементита при этом подвергаются распаду за счет образования более прочных карбидов указанных легирующих металлов. Легирование белых чугунов переходными металлами с сильно дефектной -оболочкой (Т], V, Сг) приводит к разрушению цементита и образованию прослоек чешуйчатого графита между кристаллами сплава. Следствием этого является повышение ударной прочности. Добавки хрома и никеля, расширяющие область аустенита и стабилизирующие ее структуру, обеспечивают повышенную коррозионную стойкость сталей (нержавеющие стали), поскольку в гомогенных системах процессы коррозионного разрушения протекают медленнее. [c.415]

    Кремний имеет значительно большее сродство к кислороду, чем углерод, что подтверждается значениями их теплот сгорания С + О2 = СО2 + 395 кДж 51 + О2 = = 5102 + 861 кДж. Поэтому его применяют для раскисления железных сплавов — удаления из них кислорода (например, 2РеО + 51 = 2Ре + 510г). При этом кремний, восстанавливая оксид металла, переходит в виде 5162 в шлак. Как легирующая добавка, кремний повышает прочность, упругость и коррозионную стойкость стали. Сталь с содержанием 4% кремния намагничивается и размагничивается быстрее, чем чистое железо. Кремнистые стали применяют в производстве трансформаторов, рессор и пружин. Сталь, содержащая 12—18% 51, обладает высокой кислотоупорностью. Сплавы алюминия с кремнием (4,5—14% 51)—силумины — обладают повышенной прочностью. [c.361]

    Коррозионная стойкость стали в атмосферных условиях резко возрастает при введении даже незначительного количества легирующих элементов, поэтому применение низколегированных сталей в качестве строительных и конструкщюнных материалов, эксплуатируемых в атмосферных условиях, экономически выгодно долговечность сооружений может быть повышена в 2-3 раза без дополнительной защиты в условиях промышленной, городской и сельской атмосферы. Защитное действие легирующих элементов в атмосферостойких низколегированных сталях основано на том, что легирующие элементы либо их соединения тормозят обычные фазовые превращения в ржавчине (см. рис. 1), и поэтому слой ржавчины на атмосферостойкой стали уплотняется. Считается также, что наряду с усилением защитных свойств слоя продуктов коррозии основной причиной положительного влияния меди является возникновение анодной пассивности стали за счет усиления эффективности катодной реакщш. Действие меди как эффективного катода подтверждается тем, что ее положительное влияние наблюдается уже в начальных стадиях коррозии, когда на поверхности стали еще не образовался слой видимых продуктов коррозии. [c.12]

    Известен опыт применения боридных покрытий для защиты от коррозии и наводороживания теплообменников. Теплообменники, изготовленные из стали 10, эксплуатировались в условиях воздействия конденсации паров серной кислоты, образующихся из продуктов сгорания сернистого топлива. Боридное покрытие, состоящее из двух слоев РеВ и РеВг, наносили при температуре 950 °С в виде порошкообразной смеси, содержащей 98 % В4С, 1,5 % А1Рз и 0,5 % парафина. Такое покрытие позволяет повысить в 10 раз коррозионную стойкость стали в наводороживающей сероводородсодержащей среде и одновременно повысить ее циклическую прочность. Испытания теплообменников, проведенные на стенде с переменным внутренним давлением при Ртах = 0,7 МПа с частотой 0,12 Гц показали, что без покрытия теплообменники вьщерживают от 20 до 160 тыс. циклов, с боридным покрытием - не менее 400 тыс. циклов Сб . В слабокислых минерализованных растворах в условиях периодического Смачивания цинковые покрытия, полученные электрохимическим и горячим способом, менее устойчивы, чем диффузионные слои из порошковой смеси. Оцинкованные диффузионным способом трубы в 25 раз устойчивее труб с цинковыми покрытиями из расплава и в 15 раз - с покрытиями, полученными электролитическим осаждением. [c.64]

    Нержавеющие стали. Основной легирующий элемент нержавеющих сталей — хром, который повышает механические свойства стали и способствует образованию на ее поверхности тонкого слоя окислов, облагораживающего электродный потенциал стали и повышающего ее коррозионную стойкость. Она повышается не монотонно, а скачкообразно. Первый порог коррозионной стойкости достигается при концентрации хрома, равной 12,8 %. При увеличении содержания хрома до 18 или до 25—28 % достигается второй порог коррозионной стойкости и наблюдается дальнейшее повышение коррозионной стойкости стали. Однако повышение содержания хрома приводит к понижению механических свойств стали, особенно ударной вязкости, а также затрудняет сварку, вызывая хрупкость сварного шва. Стали с высоким содержанием хрома после сварки требуют термической обработки. Повышение содержания углерода в нержавеющих сталях понижает их коррозионную стойкость, что связано с уменьшением содержания хрома в твердом растворе вследствие образования карбидов. Поэтому повышение содержания углерода в стали вызывает сдвиг порога коррозионной стойкости в область более высокой концентрации хрома. Понижение содержания углерода ниже 0,02% делает сталь стойкой против карбидообразо-вания. [c.31]

    С увеличением давления скорость коррозии стали возрастает особенно интенсивно при давлении от 2 до 3 МПа (рис. 51). При концентрации хлористых солей более 20% и до предела растворимости при повышенных давлениях наблюдается рост скорости коррозии. При повышенных давлениях кислород выступает активным деполяризатором, увеличивая скорость коррозии. Присутствие катионов, обладающих высокими деполяризующими свойствами (например, Са), значительно л-величивает скорость коррозии. Этим объясняется низкая коррозионная стойкость сталей в аэрированных высокоминерализованных буровых растворах, содержащих соль СаСЬ, добавляемую для регулирования реологических свойств промывочной жидкости, В связи с этим не рекомендуется увеличивать минерализацию буровых растворов выше 20%, особенно при наличии добавок СаСЬ. [c.108]


Смотреть страницы где упоминается термин Коррозионная стойкость сталей: [c.506]    [c.382]    [c.217]    [c.375]    [c.91]    [c.32]    [c.35]   
Термическая фосфорная кислота, соли и удобрения на ее основе (1976) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Агрессивность водных сред и коррозионная стойкость конструкционных сталей

Батраков, Л. Я- Гурвич, Ю. А. Смирнова, Л. А. Филимонова Метод испытания коррозионной стойкости нержавеющих сталей, работающих в условиях нагрева и действия влаги

В о л к о в Ю. К., П о л я к о в а С. И. — Коррозионная стойкость безникелевых нержавеющих сталей и сталей с пониженным содержанием никеля при получении пестицидов

Влияние водорода на коррозионную стойкость сталей и сварных соединений

Влияние гальванических и лакокрасочных покрытий на коррозионно-механическую стойкость сталей

Влияние некоторых видов холодной обработки и новых методов выплавки на коррозионную стойкость нержавеющих сталей и сплавов

Влияние некоторых видов холодной обработки на коррозионную стойкость нержавеющих сталей

Влияние скорости нагружения на стойкость к коррозионному растрескиванию хромоникелевых аустенитных сталей

Волков Ю. К., П о л я к о в а С. И. - - Коррозионная стойкость безникелевых нержавеющих сталей и сталей с пониженным содержанием никеля при получении пестицидов

Воробьева Г. Я. Коррозионная стойкость сталей с пониженным содержанием никеля в химически активных средах

Испытания на стойкость сталей и сплавов к коррозионному растрескиванию

КОРРОЗИОННАЯ СТОЙКОСТЬ ПЛАКИРОВАННЫХ СТАЛЕЙ И СПЛАВОВ

Колотыркин, в. М. Княжева СВОЙСТВА КАРБИДНЫХ ФАЗ И КОРРОЗИОННАЯ СТОЙКОСТЬ нержавеющих сталей Физические свойства карбидов переходных металлов

Коррозионная стойкость

Коррозионная стойкость арматурных сталей в различных агрессивных средах

Коррозионная стойкость высококремнистых сталей

Коррозионная стойкость высокохромистых сталей

Коррозионная стойкость и свойства нержавеющих сталей

Коррозионная стойкость коррозионно-стойких сталей

Коррозионная стойкость нержавеющих сталей

Коррозионная стойкость нержавеющих сталей и сплавов

Коррозионная стойкость сталей в ультрафосфорной кислоте

Коррозионная стойкость сталей и сплавов

Коррозионная стойкость сталей типа

Коррозионная стойкость ферритных сталей

Методы коррозионных испытаний и стойкость трубных сталей к различным видам коррозии

Определение влияния легирующих элементов на коррозионную стойкость сталей

Определение влияния механических напряжений на коррозионную стойкость аустенитных хромоникелевых сталей

Повышение коррозионной стойкости нержавеющих сталей, титана, циркония, хрома при легировании их катодными присадками

Повышение коррозионной стойкости сталей изменением структурно-напряженного состояния поверхности

Способы испытаний коррозионной стойкости сталей и сплавов

Сталь оценка коррозионной стойкости

Сталь стойкость

Сталь хромомарганцовистая коррозионная стойкость в различных средах

Условия повышения коррозионной стойкости, виды коррозии и области применения нержавеющих сталей и сплавов

Электрохимические свойства некоторых карбидов переходных металлов и коррозионная стойкость нержавеющих сталей



© 2025 chem21.info Реклама на сайте