Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дифференциальная аэрация

Рис. 15.2. Схематическое изображение нити, образующейся при подпленочной коррозии стали показано возникновение элемента дифференциальной аэрации, вызывающего разрушение Рис. 15.2. <a href="/info/376711">Схематическое изображение</a> нити, образующейся при <a href="/info/1286619">подпленочной коррозии</a> стали показано возникновение <a href="/info/72178">элемента дифференциальной аэрации</a>, вызывающего разрушение

    Различные виды местной коррозии возникают вследствие самых разнообразных причин (крупнозернистое строение сплава, неодинаковая толщина и пористость защитных пленок, неравномерная обработка поверхности металла, наличие в сплаве включений, дифференциальная аэрация, концентрация напряжений и др.). [c.160]

Рис. 2.5. Элемент дифференциальной аэрации на железе со ржавчиной Рис. 2.5. <a href="/info/72178">Элемент дифференциальной аэрации</a> на железе со ржавчиной
    Элементы дифференциальной аэрации часто являются причиной язвенной или щелевой коррозии нержавеющих сталей, алюминия, никеля и других пассивных металлов в воДных средах, например в морской воде. [c.25]

Рис. 2.4. Элемент дифференциальной аэрации Рис. 2.4. <a href="/info/72178">Элемент дифференциальной</a> аэрации
    Так как напряжение на поверхности концентрируется в вершине надреза или в области дефекта, там и происходит быстрый рост трещин. Поверхностные дефекты (например, питтинги или усталостные трещины) действуют как эффективные концентраторы напряжений. К тому же в достаточно глубоких поверхностных дефектах электрохимический потенциал, как отмечалось ранее, отличается от потенциала поверхности состав и pH раствора в местах поражений также изменяются вследствие работы элементов дифференциальной аэрации. Эти изменения в сочетании с повышенным локальным напряжением способны инициировать КРН или ускорить рост трещины. Именно поэтому титановые сплавы с гладкими поверхностями устойчивы к КРН в морской воде, но разрушаются, если на поверхности образовались коррозионноусталостные трещины [44]. Действительное напряжение в вершине трещины глубиной а в напряженном пластичном твердом теле может быть рассчитано как коэффициент интенсивности напряжения Кг- Для образца, изображенного на рис. 7.9, Кх вычисляется по формуле [45, 46] [c.146]


    Щелевая коррозия металлов встречается почти в любой конструкции илн любом аппарате нри условии наличия в них зазоров, застойных ЗОИ и т. п. и вызывается, согласно теории Ю. Р. Эванса, возникновением пар дифференциальной аэрации вследствие доставки растворенного в электролите кислорода к металлической поверхности в щели с меньшей скоростью, чем к примыкающим к ней участкам поверхность металла в щели становится нри этом аиодом. [c.171]

    В реальных конструкциях возможно возникновение коррозии ввиду наличия щелей и зазоров. Вследствие различного поступления кислорода к металлу в зазоре и объеме возникает пара дифференциальной аэрации, где алюминий в зазоре служит анодом коррозионного элемента и подвергается усиленной коррозии. Заметное усиление коррозии алюминия в зазоре связано с тем, что площадь катода превосходит площадь анода. При отношении площади катода к площади анода, равном 10 1, скорость коррозии анода возрастает в 4—5 раз по сравнению с отношением 1 1. Это объясняется тем, что при площади катода, на порядок большей площади анода, катодный контроль работы элемента меняется на смешанный или анодный и дальнейшая работа элемента зависит от состава коррозионной среды в зазоре, что может, например, при подкислении среды существенно увеличить ток коррозии в элементе. [c.58]

    Коррозия в щелях подчиняется тем же закономерностям, что и питтинговая коррозия. Чем выше электрическая проводимость электролита и больше площадь катодной поверхности вне щели, тем выше скорость растворения в щели, которая является анодом. Инициация щелевой коррозии, однако, не связана с достижением критического потенциала питтингообразования. Она зависит только от факторов, влияющих на нарушение пассивности внутри щели. Депассивация может произойти, например, из-за уменьшения концентрации в щели растворенного кислорода вследствие протекания незначительной общей коррозии сплава. Тогда образуется элемент дифференциальной аэрации, и в щели накапливаются кислые продукты коррозии (в результате анодной реакции). Такие изменения в составе электролита существенно способствуют [c.314]

Рис. 2.6. Коррозия по ватерлинии — пример элемента дифференциальной аэрации Рис. 2.6. Коррозия по ватерлинии — <a href="/info/1488669">пример элемента</a> дифференциальной аэрации
    КИСЛОРОДНЫЙ ЭЛЕКТРОД И ЭЛЕМЕНТ ДИФФЕРЕНЦИАЛЬНОЙ АЭРАЦИИ [c.37]

    Отрицательное значение э. д. с. указывает на то, что АО для реакции (15) положительно, значит, реакция самопроизвольно не идет. Напротив, электроны переносятся в элементе слева направо. Таким образом, левый электрод (И) положительный (катод), а правый (13) — отрицательный (анод). Это выражает сформулированное ранее положение, что в любом элементе дифференциальной аэрации электрод, контактирующий с кислородом при низком давлении стремится быть анодом, а при более высоком давлении — катодом. [c.38]

    Нитевидная коррозия не зависит от освещения, металлургических характеристик стали и наличия бактерий. Хотя нити видны только под прозрачными лаками и эмалями, они, вероятно, достаточно часто образуются под светонепроницаемыми пленками краски. Появление нитей наблюдалось при использовании различных типов связующего и на различных металлах, включая сталь, цинк, алюминий, магний и хромированный никель. На стали этот вид коррозии наблюдается только на воздухе с большой относительной влажностью (например, 65—95 %). При 100 % относительной влажности нити могут расширяться, вспучивая покрытие. Если пленка относительно непроницаема для воды, то нити могут вовсе не образоваться, как это установлено в случае парафина [14]. Нитевидная коррозия может служить характерным примером явлений, связанных с образованием элементов дифференциальной аэрации. [c.256]

Рис. 143. Установка для исследования работы коррозионных пар, обусловленных дифференциальной аэрацией Рис. 143. Установка для <a href="/info/1626928">исследования работы коррозионных</a> пар, обусловленных дифференциальной аэрацией
    Схематическое изображение процессов, происходящих при нитевидной коррозии, представлено на рис. 15.2. Анализами показано [14], что головка нити пополняется сравнительно концентрированными растворами солей двухвалентного железа. Поэтому именно на этом участке нити имеется тенденция к абсорбции воды из атмосферы. Кислород также диффундирует через пленку, и поэтому на границе раздела между головкой и основной частью нити, а также по периметру головки достигается (относительно поверхности металла) более высокая концентрация кислорода, чем в центре головки. Образуется элемент дифференциальной аэрации, в котором катодами (где происходит накопление ионов ОН ) являются все участки соприкосновения пленки с металлом, [c.256]


    Алюминий склонен к образованию питтинга в водах, содержащих ионы С1 . Это особенно сильно проявляется в щелях или застойных зонах, где пассивность нарушается в результате образования элементов дифференциальной аэрации. Механизм питтингообразования аналогичен механизму для нержавеющих сталей, описанному в разд. 18.4.1 и в этом случае наблюдается критический потенциал, ниже которого питтинг не возникает [4, 5]. При наличии в воде следов ионов Си + (даже в количестве 0,1 мг/л) или Ре + они реагируют с алюминием, и на отдельных участках отлагаются металлическая медь или железо. Эти металлы выполняют роль катодов, сдвигая коррозионный потенциал в положительном направлении до значения критического потенциала питтингообразования. Таким образом, они стимулируют как возникновение питтинга, так и его рост под действием гальванических [c.342]

    Исследования коррозионных процессов на трубопроводах, уложенных в грунтах с различной степенью доступа воздуха (дифференциальная аэрация), показываю важность реакции кислородной деполяризации в процессах коррозии. [c.41]

    Стальные резервуары, как правило, устанавливаются на песчаную подушку, которая в первый момент как бы изолирует днище почвы, однако вследствие капиллярного поднятия влаги в порах песка электролит может достигать оголенных мест днища и вызывать его коррозионные разрушения. Даже в среднекрупном песке почвенная влага обычно поднимается примерно на О,о м. Увеличение пористости песчаной подушки способствует усилению процесса, аэрации почвы и возникновению пар дифференциальной аэрации, усиливающих коррозионное разрушение днищ. [c.230]

    Таким образом, влияние биологического фактора на коррозионный процесс может проявляться как в виде непосредственного воздействия на металл продуктов, вырабатываемых микроорганизмами (сероводород), так и в виде образования на металле пленок, способствующих возникновению коррозионных элементов дифференциальной аэрации. [c.49]

    Работа 58. Исследование работы коррозионных пар дифференциальной аэраций [c.264]

    Для создания условий дифференциальной аэрации в каждое из трех отделений ячейки могут подаваться газы (кислород или азот), проходящие через систему поглотительных склянок 7 и реометры 8. Газы находятся в баллонах 9, снабженных редукторами и промежуточными сосудами для сглаживания перепадов давления. [c.265]

    Опыты по исследованию эффективности пар дифференциальной аэрации проводятся при непрерывной подаче в ячейку газов кислорода и азота или только одного азота. Газы поступают из баллонов через редуктор в буферную емкость (стеклянную бутыль на 20 л), реометр для контроля скорости потока и систему поглотителей. Для очистки кислорода применяются растворы едкого бария и концентрированная сбр-ная кислота. Азот очищается раствором пирогаллола. [c.266]

    Коррозионные потери металла, находящегося в условиях неравномерного доступа кислорода, складываются из двух источников коррозии под влиянием собственных коррозионных пар и растворения за счет работы пары дифференциальной аэрации. Скорость каждого из этих двух процессов можно рассчитать по кривой зависимости силы тока пары от времени, зная общую потерю веса образца в анодном отделении ячейки. Количество металла, электрохимически растворенного при работе пары, пропорциональное количеству протекшего электричества, нетрудно установить по площади под кривой сила тока — время. Такие расчеты, могут быть вполне однозначны, если нет сомнений относительно валентности ионов, переходящих в раствор, как в случае цинка или алюминия. [c.266]

    С другой стороны, зная потерю веса катодного участка за время эксперимента Ag , можно дать количественное выражение влиянию дифференциальной аэрации на распределение весовых потерь между анодными и катодными участками с помощью коэффициента [c.267]

    Эффект неравномерной (дифференциальной) аэрации можно количественно оценить по величине тока, протекающего между одинаковыми железными или цинковыми образцами, погруженными Б раствор Na l, разделенный диафрагмой (пористой пере- [c.246]

    Алюминиевые емкости для хранения авиационных топлив подвергаются коррозии в результате развития в керосинах микроорганизмов [12—15]. Основную роль среди этих микроорганизмов играет гриб С1ас1о5рог1ит ге5 пае [12]. Возможность и место протекания микробиологических процессов определяют в первую очередь температура и наличие воды. Рост микроорганизмов начинается на границе раздела топлива и воды, адсорбированной на. поверхности металла. В результате на поверхности бака образуется слой гриба. Скорость роста этого слоя контролируется температурой она максимальна при 30—35 °С. Последующую коррозию объясняют действием водорастворимых органических кислот, которые образуются в результате метаболизма микроорганизмов. Она может быть также следствием недостатка кислорода над растущим слоем гриба (элементы дифференциальной аэрации). Коррозию такого типа можно устранить, добавляя в топливо биоциды [12]. [c.346]

    Ранее было указано, что иа скорость коррозии металлов оказывает влияние и характер обработки новерхиости конструкции. Эксиеримеиталыю было установлено, что гладкая поверхность металла но сравнению с rpy6oii, шероховатой, обладает большей стойкостью к коррозии. Гладкая поверхность металла имеет меньше различных дефектов в виде зазоров, царапин и т. д., которые могут явиться причиной образования очагов коррозии. Так, например, поверхности, грубо обработанные резцом, могут подвергаться более сильной коррозии вследствие того, что к поверхности металла, лежащего в углублении рисок, будет иосту-иать меньше кислорода, чем к участкам, лежащим на гребнях поэтому в случае нейтральной или щелочной среды, когда процесс коррозии металла идет с кислородной деполяризацией, на участках с большей концентрацией кислорода (гребни) потенциал будет более положителен, чем иа участках с меньшей концентрацией кислорода (углубление), и вследствие дифференциальной аэрации возникает коррозионный микроэлемент. [c.84]

    Коррозионное разрушение бурового оборудования в буровых растворах может ускоряться при наличии макрогальванических элементов. Таковыми, могут быть элементы дифференциальной аэрации, термогальванические элементы (например, различие температуры верха и низа бурильной колонны), контакт разнородных металлов (стальной замок — тело трубы из легкого сплава). [c.107]

    Высокая электропроводность морской воды создает благоприятные условия для работы макропар в случае контакта двух металлов или сплавов. В частности, по отношению к стали в морской воде медь, никель, бронза, латунь, нержавеющая сталь Х18Н9 являются катодами. Неоднозначным является влияние на коррозию обрастания водорослями и морским желудем. Вследствие затрудненности подвода кислорода к поверхности стали обрастания могут уменьшать общую коррозию, а из-за увеличения мощности пар дифференциальной аэрации под слоем обрастания развивается язвенная коррозия. Значительное усиление коррозионного разрушения могут вызвать сернистые соединения, выделяемые микроорганизмами и снижающие величину pH электролита в приэлектродной зоне.  [c.188]

    В концентрационных элементах два одинаковых электрода контактируют с растворами разных составов. Существуют два типа концентрационных элементов. Первый называется солевым концентрационным элементом. Например, если один медный электрод погружен в концентрированный раствор сульфата меди, а другой — в разбавленный (рис. 2.3), то при замыкании такого элемента медь будет растворяться с электрода, находящегося в разбавленном растворе (анод) и осаждаться на другом электроде (катоде). Обе реакции ведут к выравниванию концентрации растворов. Другой тип концентрационного элемента, имеющий большое практическое значение, — элемент дифференциальной аэрации. Примером может служить элемент из двух железных электродов, погруженных в разбавленный раствор ЙаС1, причем у одного электрода (катода) электролит интенсивно насыщается воздухом, а у другого (анода) — деаэрируется азотом. Различие в концентрации кислорода сопровождается возникновением разности потенциалов, что обусловливает протекание тока (рис. 2.4). Возникновение элемента этого вида вызывает разрушения в щелях (щелевая коррозия), образующихся на стыках труб или в резьбовых соединениях, поскольку концентрация кислорода в щелях ниже, чем снаружи. Этим также объясняется язвенное разрушение под слоем ржавчины (рис. 2.5) или коррозия на границе раздела раствор—.воздух (рис. 2.6). Доступ кислорода к участкам металла, покрытым ржавчиной или другими твердыми продуктами коррозии, затруднен по сравнению с участками, покрытыми тонкими пленками или свободными от них. [c.25]

    Коррозия железа и стали в лресной и морской воде, а также во влажном воздухе, коррозия цинка во многих нейтральных средах Протекает с кислородной деполяризацией. В атом случае катодные участки микроэлементов следует рассматривать как кислородные электроды, на которых идет процесс восстановления кислорода, т. е. взаимодействие атомов кислорода с электронами и водой с образованием ионов гидроксила. Для процессов с кислородной деполяризацией характерно возникновение гальванических пар, называемых парами дифференциальной аэрации. В таких элементах те участки поверхности металла, куда кислород попадает легче, становятся катодами, а поверхность металла, к которой кислород поступает труднее, становится анодом. Между анодной и катодной частями возникает ток и начинается коррозия, при которой разрушается анодная часть, куда кислород поступает в мецьших количествах (подводные части металлоконструкций, глубокие трещины и т. д.). [c.270]

    Коррозионный процесс с катодным контролем характерен для большинства плотных и увлажненных почв, когда определяющей является реакция присоединения электрона (водородная или кислородная деполяризация), протекающая с меньшей скоростью. Для сухих, рыхлых и хорошо аэрируемых почв характерен анодный контроль, когда затруднен отвод положительных ионов металла от анодного участка поверхности металлического сооружения. В условиях работы макроэлементов дифференциальной аэрации преобладает смещанный катодно-омический или омическнн контроль. В последнем случае процесс коррозии затормаживается в основном 46 [c.46]

    Помимо пар дифференциальной аэрации, вызванных краевым эффектом, могут образовываться гальванопары между отдельными точками края резервуара. [c.232]

Рис. 3.9. Образование макрокорроэиошюго элемента вследствие дифференциальной аэрации участков трубопроводов Рис. 3.9. Образование макрокорроэиошюго элемента вследствие <a href="/info/72178">дифференциальной аэрации</a> участков трубопроводов
    В местах, куда окислитель не поступает, коррозия, а первый взгляд, должна отсутствовать. Однако так как металл и раствор обладают электропроводно стью, протекающий с некоторым перенапряжением анодный процесс ионизации меташла не локализуется только на тех местах, где идет сопряженный процесс восстановления кислорода, а распространяется и на смежные с ними участки. Более того, нередко на местах, легко доступных для кислорода, возникают пассивные цленки иногда анодный процесс, а значит, и разрушение металла практически целиком сосредоточиваются на участках, не цодвергающихся аэрации. Развивается так называемая коррозия с дифференциальной аэрацией, которая возможна при участии не только кислорода, но и других окислителей, споообньрх вызывать пассивность металла. [c.421]

    Одной из распространенных причин дифференциации поверхности корродирующего металла на катодные и анодные участки являются различия в составе электролита. Очень часто эти различия вызываются неравномерным распределением катодного деполяризатора, как, например, при образовании коррозионных пар дифференциальной аэрации за счет затрудненного доступа кислорода к отдельным участкам по-верхност и металла. Будучи анодным по отношению ко всей остальной поверхности, эти участки становятся очагами локализованного коррозионного разрушения. [c.264]

    Нахождение площади под кривой сила тока — время состоит в графическом интегрировании. Пусть Q означает количество протекще-го электричества за счет работы пары дифференциальной аэрации. Количество электрохимически растворенного металла за счет работы пары дифференциальной аэрации будет равно [c.266]

    Установка для нсследования пар дифференциальной аэрации откры вает широкие бозможности постановки целого ряда экспериментов, на правленных на изучение влияния условий аэрации, состава коррозион пой среды, природы металла и различных других факторов на электрод ные потенциалы катодных и анодных участков и силу тока, протека ющего между ними. [c.267]


Смотреть страницы где упоминается термин Дифференциальная аэрация: [c.76]    [c.9]    [c.175]    [c.289]    [c.331]    [c.376]    [c.50]    [c.267]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.281 ]




ПОИСК





Смотрите так же термины и статьи:

Аэрация



© 2025 chem21.info Реклама на сайте