Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Время жизни фосфоресценции ароматических соединений

    Времена жизни триплетных состояний ароматических углеводородов, включенных в пластик — полиметилметакрилат (ПММ), были определены как по затуханию фосфоресценции, так и по спаданию триплет-триплетного поглощения [72, 247]. Времена жизни оказались примерно в 2 раза меньше, чем в случае стекол из ЭПА. Кроме того, обнаружено, что за несколько месяцев проходит медленная диффузия атмосферного кислорода в пластик, приводящая к тушению фосфоресценции. Это дает возможный метод для измерения скорости диффузии кислорода в пластики [72, 248]. Аналогичные исследования с использованием различных пластических сред [248] показывают, что время жизни фосфоресценции зависит не только от локальной вязкости, но также и от специфических взаимодействий растворенного соединения с полимерной матрицей. Влияние связи молекул красителей с высшими полимерами на их флуоресцентные свойства рассмотрено Остером и Остер [249]. Эти авторы наблюдали также фосфоресценцию нафталина в ПММ при комнатной температуре, сенсибилизированную бензофе-ноном, и излучение фотодимера пирена в поликарбонате, исключив, таким образом, влияние диффузии. [c.143]


    В свете этих возможных первичных процессов рассмотрим данные табл, 4-12, относящиеся к нафталину и бензофенону в твердых растворах при 77° К. Сразу становятся ясными некоторые выводы. Очевиднее всего то, что обычные ароматические карбонильные соединения (как, например, бензофенон, ацетофенон, бензальдегид) имеют большие квантовые выходы фосфоресценции и практически не флуоресцируют (т. е. отношение фр/ф/ > 1000). Однако незамещенные ароматические углеводороды обладают и флуоресценцией и фосфоресценцией. Вероятно, причиной флуоресценции этих углеводородов является главным образом большое расщепление 51->- Г1, уменьшающее вероятность безызлучательного перехода б" -—> Т1. Напротив, бензофенон имеет сравнительно большое время жизни синглетного состояния ( 10 сек) и малую разность энергий, облегчающую интеркомбинационную [c.238]

    Вычисления времени жизни метастабильных органических молекул были выполнены тремя способами теоретически, на основе одного только спин-орбитального взаимодействия (что должно дать верхний предел для действительного времени жизни в конденсированных системах ), и экспериментально—либо на основании длительности фосфоресценции, либо по интенсивности слабых полос поглощения, которые, как это было обнаружено, соответствуют полосам фосфоресценции у некоторых органических соединений. В общем, действительные времена жизни фосфоресценции оказались не меньше, а больше (в 10, 100 и даже в 1 ООО раз), чем теоретические значения, особенно у ароматических соединений. Время жизни, полученное из интенсивности полос поглощения, также часто оказывалось более коротким, чем то, которое было определено при помощи фосфоресцентного метода. Указывают ли эти результаты на то, что, по крайней мере, в некоторых молекулах метастабильное состояние соответствует скорее атомному, чем электронному таутомеру, — пока еще сказать трудно. Другое возможное объяснение состоит в том, что вычисление времени жизни на основе одного сингулет-триплетного правила запрета дает слишком малые значения потому, что в некоторых соединениях, особенно в ароматических системах, дело осложняется соображениями симметрии. [c.205]

    Скорость запрещенных по спину переходов может быть существенно изменена под влиянием внешнего окружения. Такое воздействие можно наблюдать при добавлении парамагнитных молекул в растворитель. Хотя О2 и N0 уменьшают выход фосфоресценции вследствие своего участия в эффективном бимолекулярном тушении, они вызывают одновременно рост скоростей оптического перехода и IS . Поглощение при переходе T l- -So также возрастает по интенсивности в тех случаях, когда присутствуют парамагнитные соединения. Например, поглощение при переходе Ti- -So в бензоле ( 310—350 нм) практически исчезает, когда удаляются последние следы кислорода. Наиболее драматическую картину поглощения 7- -S представляют растворы пирена, которые в обычном состоянии бесцветны, но приобретают насыщенный красный цвет в присутствии кислорода при высоком давлении. Тяжелые атомы в своем окружении способствуют также росту вероятности излучательных и безызлучательных переходов путем индуцирования заметного спин-орбитального взаимодействия в растворе. Так, растворы антрацена и некоторых его производных начинают слабее флуоресцировать при добавлении бромбензола, тогда как интенсивность триплет-триплетного поглощения возрастает в результате усиления IS Si T i. Как мы отмечали ранее, эти процессы наиболее значительны для переходов, включающих возбужденные состояния (л, л ). Спин-орбитальное взаимодействие всегда пренебрежимо мало в симметричных ароматических соединениях, и именно здесь изменение скоростей переходов под воздействием окружения наиболее заметно. В то же время сильное спин-орбитальное взаимодействие всегда существует в состояниях (п, л ), и в этом случае воздействие внешнего возмущения более слабое. Эти эффекты наблюдаются как в твердых, так и в жидких растворах. Например, фосфоресцент-ное время жизни в бензоле, растворенном в стеклообразной матрице при 4,2 К, уменьшается от 16 с в СН4 или Дг до 1 с в Кг и до 0,07 с в Хе отношение <рр/ф1 возрастает, и все процессы IS Si T i, T,- So+hv и Ti So протекают быстрее в растворителе с большей атомной массой. [c.107]


    По люминесцентным свойствам шестичленные гетероциклические соединения значительно отличаются от аналогично построенных ароматических углеводородов. В то время как углеводороды обладают флуоресценцией и фосфоресценцией, многие гетероциклы не флуоресцируют. Причина этого явления в том, что в возбужденном состоянии электроны с нижнего 5 я -уровня переходят на триплетный 7 го1 -ур0вень, большая длительность жизни которого способствует безызлучательной трате энергии [3]. Таким образом, люминесцентные свойства гетероциклических соединений в значительной степени определяются вероятностью S n Гля -конверсии, зависящей от относительного расположения пя - и яя -уровией. [c.118]


Фотохимия (1968) -- [ c.238 , c.241 , c.244 ]




ПОИСК





Смотрите так же термины и статьи:

Время жизни

Фосфоресценция



© 2025 chem21.info Реклама на сайте