Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переходы безызлучательные

    Молекула обладает набором энергетических состояний (рис. 28). Молекула, попавшая на верхние колебательные уровни любого возбужденного состояния, быстро теряет избыток колебательной энергии при столкновениях с окружающими молекулами. Это процесс колебательной релаксации. Безызлучательный переход между электронными состояниями одинаковой мультиплетности называется внутренней конверсией, аналогичный переход между состояниями разной мультиплетности — интеркомбинационной конверсией. [c.51]


    Все рассмотренные выше реакции представляют собой мономолекулярные процессы распада. Генерация ионов в ходе электронной бомбардировки часто приводит к потере наименее прочно удерживаемого электрона, и ионы часто образуются в колебательно возбужденных состояниях с избытком внутренней энергии. В некоторых молекулах образца происходит потеря низкоэнергетического электрона, что приводит к иону в электронно возбужденном состоянии. Ион в возбужденном состоянии может подвергаться внутренней конверсии энергии, в результате чего он переходит в основное электронное состояние с избытком колебательной энергии. Молекула может диссоциировать в любое из возбужденных состояний, участвующих во внутренних конверсиях с безызлучательным переносом энергии. В этом случае ион фрагментирует, как только он начинает колебаться. Таким образом, в данном образце получаются ионы с широким энергетическим распределением, и фрагментация может происходить по различным механизмам. Полезно рассмотреть временные шкалы для некоторых обсужденных процессов. Время одного валентного колебания составляет 10 с, максимальное время жизни возбужденного состояния — около 10 с и время, которое ион проводит в ионизационной камфе масс-спектрометра, равно 10 —10 с. Следовательно, для перехода иона с избыточной электронной энергией в более низкое электронно возбужденное состояние с избытком колебательной энергии времени вполне хватает. Поэтому мы наблюдаем процессы в ионизационной камере через регистрируемые молекулярные ионы в различных энергетических состояниях, которые подвергаются быстрой внутренней конверсии энергии, образуя индивидуальные ионы с различным количеством избыточной энергии. Фрагментация протекает по первому порядку с различными [c.319]

    ИКП Интеркомбинационный переход безызлучательная < 10 —10  [c.363]

    Зависимость флуоресценции от температуры. В отсутствие тушителей эффективность флуоресценции фф определяется относительными скоростями излучательного процесса кф, с одной стороны, и безызлучательных процессов интеркомбинационной и внутренней йд конверсии, с другой. Скорость излучательного процесса не зависит от температуры, поэтому изменения фф отражают изменения кк и йд. Последние увеличиваются с ростом температуры, поскольку на верхние колебательные уровни состояния попадает все большая часть молекул и вероятность перехода через область пересечения потенциальных поверхностей возрастает. При пони ке-нии температуры обе константы скорости стремятся к предельным значениям, соответствующим интеркомбинационной или внутренней конверсии с самого нижнего, колебательного уровня Слабо флуоресцирующее вещество может стать при низкой температуре сильно флуоресцирующим. Зависимость выхода флуоресценции от температуры можно представить уравнением [c.62]


    Переход 2-3 является безызлучательным. Возвращение электронов с уровня 2 на исходный уровень I сопровождается излучением на длине волны 694,3 нм (красный цвет). Оба конца рубинового стержня покрыты отражающими слоями (< и 6 на рис. 5.2, а, причем слой 4 выполнен полупрозрачным). После многократных отражений в оптическом резонаторе, образованном зеркалами и рубиновым стержнем, происходит усиление излучения и образуется мощный когерентный пучок с плоским фронтом, двигающимся вдоль оси кристалла и выходящим через полупрозрачное зеркало 4 (рис. 5.2, а). Генерация излучения продолжается до тех пор, пока заселенности уровней 1 и 2 не сравняются. Лазер на кристалле рубина длиной от 20 до 25 см и диаметром 1,5 см при накачке с помощью светового импульса длительностью 10 з с излучает в течение времени такого же порядка импульс мощностью 1 кВт. [c.98]

    Конструкция лазеров на органических красителях отличается от конструкции газовых и твердотельных лазеров. Активное вещество представляет собой органический растворитель (метиловый спирт), в котором растворено небольшое количество красителя, например родамина. Из основного энергетического состояния молекулы вещества после облучения попадают в возбужденное, имеющее вид широкой полосы, содержащей множество колебательных и вращательных уровней. После этого перехода молекулы красителя за очень короткое время совершают безызлучательный переход с выделением тепла на самые нижние уровни этого возбужденного состояния. Таким образом достигается инверсная заселенность между нижними уровнями возбужденного и верхними невозбужденного состояний. [c.100]

    Фотохимическая деградация, по-видимому, является наиболее важным фактором внешних условий. В монографиях [196—203, 207—209] детально рассматриваются основные процессы поглощения фотона, возбуждения электрона, передачи энергии через экситоны, люминесценция, фосфоресценция и безызлучательные переходы, разрыв цепей и образование свободных радикалов, вторичные реакции, стабилизация и защита материала. [c.319]

    Возможны также LMM — оже-переходы, когда заполнение вакансии, образовавшейся после облучения в L оболочке, в результате безызлучательного перехода электрона с М оболочки приводит к выбросу оже-электрона с другого уровня той же оболочки и др. [c.139]

    Невозбужденное состояние молекул органических соединений— синглетное. Оно характеризуется минимумом энергии и отсутствием неспаренных электронов. При возбуждении молекулы, как это видно из рис. 1.32, осуществляется электронно-колебательный синглет-синглетный переход 5о—Избыток колебательной энергии на возбужденном уровне 51 может быть утрачен за счет безызлучательного процесса внутренней конверсии (ВК) —>-51 о. При переходе электрона с нижне- [c.94]

    Причины медленного протекания стадии разряда — ионизации связаны с квантово-механической природой перехода заряженных частиц через границу раздела электрод/раствор. В самом деле, согласно принципу Франка — Кондона, безызлучательный процесс перехода электрона с металла на частицу Ох в реакции (А) или обратно с частицы Red на металл возможен лишь при условии, если полные энергии электрона в начальном и конечном состояниях приблизительно одинаковы. Для реализации этого условия необходимо изменить ориентацию диполей растворителя вблизи реагирующей частицы, что требует затраты определенной энергии активации. Кроме того, вероятность элементарного акта разряда—ионизации при выполнении принципа Франка—Кондона в общем случае не равна единице она зависит от перекрывания волновых функций начального и конечного состояний, а потому резко убывает с удалением реагирующей частицы от поверхности электрода. В результате принимают (или отдают) электроны только адсорбированные на электроде частицы Ох (или Red). [c.215]

    Безызлучательный переход на колебательный подуровень трип-летного состояния интеркомбинационная конверсия)  [c.201]

    Безызлучательный переход из в интеркомбинационная конверсия) А Т )—>-к 8 ). [c.201]

    Безызлучательный переход на высокий колебательный подуровень основного состояния (внутренняя конверсия)  [c.255]

    Если молекула переходит из одного электронного состояния в другое без поглощения или испускания света, то говорят о безызлучательном процессе. Выделяют два типа таких переходов  [c.278]

    При безызлучательном процессе энергия электронов возбужденной молекулы может быть непосредственно передана другим молекулам (например, в результате триплет-триплетного переноса). Вместе с тем, при безызлучательном переходе возникает избыток колебательной энергии, который быстро переходит в тепло. Химику важно знать, что конечные продукты фотохимической реакции могут образовываться как в возбужденных электронных состояниях 5 или Т, так и при их дезактивации в горячее основное электронное состояние 5ц, у которого возбуждены высокие колебательные уровни. В фотохимическом процессе могут возникать также нестабильные радикалы, биполярные [c.278]

    Дезактивирование возбужденного состояния может также происходить без излучения фотонов. Подобные безызлучательные переходы осуществляются при электрическом взаимодействии частицы с окружающей средой. Возвращение в основное состояние происходит непосредственно (процесс релаксации) или через промежуточные стадии. Безызлучательный переход возбужденных электронов с изменением спина может привести к неустойчивому промежуточному состоянию (триплетное состояние). После определенного времени пребывания в нем электроны возвращаются в основное невозбужденное состояние процесс этот сопровождается испусканием квантов более длинноволнового излучения (люминесценция). Если эмиссия света происходит только тогда, когда подводится энергия извне, говорят о флуо- [c.180]


    Продолжительность жизни возбужденного состояния можно уменьшить посредством внешних воздействий, что в соответствии с уравнением (5.1.12а) приведет к уширению линии. В газовой фазе молекулы или атомы могут преждевременно терять свою энергию возбуждения, сталкиваясь с соседними частицами (безызлучательные переходы). Чем больше таких столкновений, тем короче и менее определенна продолжительность жизни возбужденного состояния. Поэтому с увеличением давления наблюдают за- [c.181]

    Согласно правилу Гунда, триплетные уровни лежат ниже, чем соответствующие им синглетные уровни. Излучательный переход из нижнего триплетного состояния в основное называется фосфоресценцией. Излучательные переходы между состояниями разной мультиплетности, например между синглетами и триплетами, теоретически запрещены. В действительности, вследствие спин-орби-тального взаимодействия такие переходы наблюдаются, хотя они И менее вероятны, чем синглет — синглетные или триплет — триплетные переходы. Триплетные молекулы легко теряют свою энергию в различных безызлучательных процессах. Они могут дезактивироваться молекулами с неспаренными электронами, например [c.53]

    Ядра изолированы от окружающей их решетки электронными оболочками и не могут отдать избыточную энергию путем соударений. Вероятность спонтанного (самопроизвольного) излучения в радиоволновом диапазоне ничтожно мала (например, время жизни протона в возбужденном состоянии равно лет). Существует, однако, безызлучательный путь отдачи энергии ядрами, называемый релаксацией. Дело в том, что в каждом образце, содержащем магнитные ядра, возникают слабые флуктуирующие (хаотически меняющиеся) локальные магнитные поля, обусловленные межмолекулярными и внутримолекулярными движениями. Эти магнитные поля содержат весь спектр колебаний, в том числе и тех, которые совпадают с частотой ларморовой прецессии магнитных ядер данного изотопа. Соответствующая компонента этого локального поля может вызвать переход того или иного прецессирующего ядра с верхнего уровня на нижний путем резонансного взаимодействия с ним. Энергия этого перехода передается элементам решетки в виде дополнительной поступательной, вращательной или колебательной энергии, т. е. превращается в тепловую энергию образца. Такой процесс охлаждения ядерных спинов называется спин-решеточной релаксацией. Он будет происходить довольно часто, поскольку, как показывает расчет, вероятность вынужденного излучения или ядерного магнитного резонанса велика (в противоположность спонтанному излучению). Система возбужденных ядер получает возмож- [c.22]

    Так как вследствие быстрой внутренней конверсии (характеристическое время 10- 3—10- 2 сек.) молекула из высоко-возбужденного состояния переходит безызлучательно в первое возбужденное синглетное состояние, можно было бы ожидать, что среди возбужденных молекул таких молекул окажется больше всего. Однако данные по Сенсибилизированной люминесценции не свидетельствуют в пользу такого заключения. Согласно Сангстеру и Ирвину [6], абсолютная эффективность люминесценции раствора 1,5 г/л антрацена в толуоле при 30° С составляет 0,14% (от поглощенной раствором энергии). Энергия кванта люминесценции антрацена 2,7 эв. Следовательно, на 100 эв поглощенной раствором энергии излучается 0,05 кванта. Квантовый выход люминесценции антрацена в насыщенном воздухом бензоле составляет 0,2 [7], примем такое же значение квантового выхода и в случае толуола. Эффективность переноса энергии для раствора 1,5 г]л антрацена в толуоле при тех же условиях составляет 0,9 [8]. В результате получаем, что в переносе энергии участвуют 0,3 возбужденных молекул толуола на каждые 100 эв поглощенной энергии. Величина такого же порядка должна получиться и для раствора в бензоле. Отсюда следует, что резонансный перенос энергии по нижним возбужденным синглетным уровням не может быть ответствен за радиационно-химические выходы 0>0,5. Видимо, имеет место тушение возбужденных молекул растворителя, обусловленное трековыми или другими эффектами. [c.254]

    Скорости переходов. При изучении фотолюминесценции необходимо знать временные характеристики излучательных и конкурирующих с ними безызлучательных процессов дезактивации возбужденных состояний. Для излучательных процессов характерны следующие времена. Поглощение света происходит за время порядка одного колебания световой волны, т. е. около 10 с. Флуоресценция из самого нижнего возбужденного синглетного состояния происходят от 10 с (для я —я-переходов) до 10 (для я —п-переходов). Излучательные времена триплетных состояний лежат в пределах от 10 2 до с. Безызлучательные переходы из верхних возбужденных состояний происходят за время порядка 10 2 с. Скорость внутренней конверсии с нижнего возбужденного синглета в основное состояние часто сравнима со скоростью флуоресценции. Интеркомбинационная конверсия из нижнего синглетного состояния протекает за время порядка излучательного времени жизни флуоресценции. Р1нтеркомбинационные переходы из триплета в основной синглет происходят сравнительно медленно (Ю — 10 с в зависимости от условий). [c.57]

    Спи и- спиновая релаксация — это процесс, прн котором происходит переход спина с верхнего уровня на нижний, а выделяющаяся при этом энергия безызлучательно передается какому-либо другому спину, находящемуся на нижнем уровне. Спин, получивший энергию, переходит на верхний уровень. Вследствие этого процесса происходит перераспределение энергии по всей спиновой системе. В основе спин-спинового взаимодействия лежит тот факт, что в любой реальной системе парамагнитная частица находится не только во внешнем магнитном поле, но также подвергается воздействию локальных магнитных полей, создаваемых соседними парамагнитными центрами. Спин-спиновая релаксация характеризуется, аналогично спин-решеточной релаксации, временем спин-спиновой релаксации T a T a — среднее время жизни спина на верхнем уровне, обусловленное спин-спиновой релаксацией. Аналогичным образом может быть определено и — как среднее время жизни спина на верхнем уровне, обусловленное спин-решеточной релаксацией, [c.234]

    Независимость спектров люминесценции от длины волны возбуждающего света. Спектр люминесценции (его форма и положение) для сложных органических молекул в конденсированных средах не зависит от длины волны возбуждающего света, если эта длина волны лежит в пределах их электронного спектра поглощения. Это объясняется тем, что возбужденные молекулы, поглотивщие кванты различной величины, попадают на уровни разных возбужденных электронно-колебательных состояний. Затем за время, много меньше средней длительности их возбужденного состояния, они успевают растратить избыточную колебательную энергию безызлучательным путем, в частности, на взаимодействие с молекулами окружающей среды. После такого перераспределения избыточной энергии происходит излучательный переход с одних и тех же электронных уровней. Поэтому спектр люминесценции не изменяется. [c.91]

    Процессы релаксации. Заселенность энергетических уровней системы спинов подчиняется статистическому распределению Больцмана [уравнение (5.1.12)]. При тепловом равновесии более низкий энергетический уровень заселен несколько больше, чем более высокий, и в этом случае преойаадает резонансное поглощение. Если бы система спинов обменивалась энергией только с переменным полем, то это привело бы к выравниванию степени заселенности уровней и сигнал поглощения стал бы уменьшаться (состояние шхсыи ия ). Однако система спинов одновременно взаимодействует со своим диамагнитным окружением (называемым в общем решеткой), что приводит к безызлучательным энергетическим переходам спин-решеточная релаксация). Вследствие этого обмена энергией с решеткой тепловое равновесие в системе спинов вновь приближается к состоянию, соответствующему распределению Больцмана. Ход этого процесса описывается экспоненциальной функцией и характеризуется постоянной времени, называемой време-нел спин-решеточной релаксации Т . Если процесс спин-решеточной релак- [c.250]

    Из состояния 81 система может перейти в состояние Зо, испустив свет той частоты, что и при поглощении. Однако возможны переходы на уровни которые происходят веоп-тическим путем. Поскольку уровни 81 и Т1 близки, энергия, освобождающаяся при переходе между ними, легко превращается в колебательную энергию атомов в молекуле. Это так называемые безызлучательные переходы. [c.142]


Смотреть страницы где упоминается термин Переходы безызлучательные: [c.450]    [c.64]    [c.489]    [c.117]    [c.615]    [c.94]    [c.16]    [c.615]    [c.256]    [c.278]    [c.278]    [c.6]    [c.323]   
Спектры и строение простых свободных радикалов (1974) -- [ c.79 , c.183 , c.185 , c.191 ]

Молекулярная биофизика (1975) -- [ c.321 ]

Основы квантовой химии (1979) -- [ c.402 , c.403 ]

Молекулярная фотохимия (1967) -- [ c.16 ]

Руководство по аналитической химии (1975) -- [ c.181 ]

Спектры и строение простых свободных радикалов (1974) -- [ c.179 , c.183 , c.185 , c.191 ]

Биоэнергетика и линейная термодинамика необратимых процессов (1986) -- [ c.80 ]




ПОИСК







© 2025 chem21.info Реклама на сайте