Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ЭПР-поглощение картина

    При облучении светом элементов в парообразном состоянии наблюдается обратная картина свет определенных длин волн не излучается, а поглощается. Более того, поскольку как поглощение, так и излучение света обусловлено одними и теми же процессами, протекающими в противоположных направлениях, то пары поглощают излучение с точно теми же длинами волн, какие наблюдаются в других условиях при испускании излучения. [c.102]


    Как и следует ожидать из данных ультрафиолетовой поглотительной спектроскопии (см. выше), парафины и нафтены в основном лишь слабо флуоресцируют. Ароматические соединения, начиная от бензола, обладают слегка видимой флуоресценцией (полосы поглощения видны в коротких длинах волн обыкновенного ультрафиолета), но флуоресценция увеличивается по мере усложнения структуры кольца, полосы поглощения близки к видимой области или в самой видимой области [202]. Использование флуоресцирующего спектра при решении аналитических проблем было ограничено, хотя некоторые ароматические соединения, находящиеся в более тяжелых нефтяных фракциях, дают характерные картины [203—204]. Но так как флуоресценция очень чувствительна к следам инородных веществ [205 ], то другой метод, ультрафиолетовая спектроскопия поглощения, должен быть использован в качестве дополнения к этим анализам. [c.190]

    При оценке влияния ТЭС на окисление бензина следует иметь в виду, что кислород в данном случае расходуется не только на окисление углеводородов топлива, но и на окисление самого ТЭС. Поэтому более полную картину влияния ТЭС можно получить при сопоставлении кривых поглощения кислорода с кривыми изменения содержания фактических смол и кислотности. Представленные данные (рис. 103) свидетельствуют о том, что ТЭС ускоряет окисление бензина. [c.249]

    Другой особенностью источника быстрых пейтронов, которую следует учитывать при расчетах, является первый пробег. Когда рождается быстрый нейтрон, он движется от точки своего рождения к наружной поверхности, пока не испытает первого столкновения. При относительно больших энергиях сечепие поглощения мало (оно изменяется по закону 1/у), так что наиболее вероятно первое рассеивающее столкновение. В большинстве случаев большая доля полного пробега нейтрона в процессе замедления обусловлена именно первым пробегом. Хотя, в среднем, нейтроны испытывают много последующих рассеяний, они происходят в пределах малого расстояния от точки первого рассеяния. В результате нейтрон достигает тепловой энергии в окрестности точки первого столкновения. Можно представить себе следующую грубую картину процесса замедления первый пробег, который равен длине пробега до замедления, и последующее замедление в точке первого рассеивающего столкновения. Эта грубая модель может быть использована в качестве первого приближения при описании процесса замедления быстрых пейтронов. [c.163]


    Вследствие поглощения при абсорбции определенных компонентов газа потоки абсорбента и газа могут существенно изменяться по высоте аппарата. Аналогичная картина наблюдается и при десорбции. Обычно различают абсорбцию тощих (сухих) газов, при которой количество извлекаемых компонентов не превышает 10—15 %, и в этом случае можно пользоваться усредненными характеристиками потоков, и абсорбцию жирных газов, при которой требуется учитывать изменение характеристик газового и жидкостного потоков по высоте аппарата. [c.196]

    Поэтому нри непрерывном нроцессе адсорбции получается следующая картина распределения но высоте колонны интенсивности поглощения этилена и связанной с этим тепловой нагрузки. На верхних тарелках-, которые орошаются свежей 98%-пой серной кислотой, очень энергично реагирующей с этиленом, выделяется относительно мало теила. Это происходит потому, что ] онцентрация этилена в газе,контактирующем с кислотой на верхних тарелках, очень понизилась, так как подавляющая часть олефина уже была извлечена из газа реакционной смесью на тарелках, расположенных ниже. С другой стороны, очень мала также растворимость этилена в свежей серной ](ислоте, не содержащей еще этилсульфатов. Так как скорость присоединения свежей серной кислоты к этилену значительно больше, чем его растворимость в этой кислоте, в пей свободный этилен в растворенном состоянии отсутствует. [c.454]

    И наконец, картина значительно упрощается, если предположить, что вещество частиц является прозрачным диэлектриком. Тогда можно не учитывать поглощения света. Этот случай, который включает и высокомолекулярные системы, встречается чаще всего и наиболее важен в практическом отношении. [c.20]

    Идея основного эксперимента структурного анализа состоит в наблюдении картины рассеяния монохроматического излучения вещественным объектом Р (рис. В.1, а), имеющим конечный объем V. Для бесконечного объекта интенсивность рассеяния, без учета поглощения, должна быть бесконечной. Предполагаем, что объект полностью купается в первичной волне. Трехмерную картину рассеяния трехмерным объектом удобно описывать в векторной форме. [c.10]

    Однако часто ассоциация, установленная электрохимическими методами, не сопровождается изменениями оптических свойств и появлением полос в спектрах, соответствующих молекулам. В этих случаях, вероятно, имеет место электростатическое взаимодействие между ионами при образовании ассоциатов. Однако область поглощения света такими ионами лежит в далекой ультрафиолетовой области, т. е. в области интенсивного поглощения растворителями, что затемняет картину. [c.10]

    При съемке изотропного (в макроскопическом смысле) поликристаллического вещества дифракционная картина может быть представлена (см. гл. 1) как серия вложенных друг в друга конусов, осью которых является первичный пучок рентгеновского излучения. При регистрации на дифрактометре должна была бы получиться серия дискретных линий, но в действительности они имеют конечную ширину из-за расходимости первичного пучка, конечных размеров входной щели и щели счетчика, конечного значения коэффициента поглощения и ряда других причин, рассмотренных в предыдущей главе. Тем не менее ширина линий обычно гораздо меньше, чем интервал между ними. [c.245]

    TOB симметрии и с теоретической картиной расщепления для этого случая. Если расщепляются не только первая, но и последующая линии поглощения (что обычно наблюдается в кристаллах), интерпретация затрудняется из-за размытости тонкой структуры. [c.256]

    Прежде всего, необходимо обеспечить очень высокую степень стабилизации питания источника света, постоянство чувствительности приемника и стабильный коэффициент усиления прибора. Иначе величина сигнала на выходе будет самопроизвольно изменяться и работа с прибором станет невозможной. Кроме того, яркость источника сплошного света не одинакова для разных участков спектра. Меняются также коэффициенты пропускания и отражения света оптическими деталями прибора и чувствительность большинства приемников света. Полосы поглощения атмосферных паров воды и СОг в инфракрасной области еще более осложняют картину. Поэтому при переходе от одного участка спектра к другому необходимо изменением ширины щелей монохроматора или регулировкой усиления установить достаточно большой отброс по шкале регистрирующего прибора для сигнала от самого источника света. Затем нужно зарегистрировать [c.304]

    Вероятность переходов между уровнями различных оснований мала и спектр ДНК (максимум поглощения) близок к среднему значению спектров оснований. Водородные связи оказывают незначительное влияние на общую картину распределения зарядов я-электронов. [c.354]

    Кривая титрования дает картину поведения ионита при поглощении кислоты или щелочи в отсутствие раствора нейтральной соли в условиях, приближенных к условиям работы ионита в ионообменных колонках. [c.160]


    Физическая картина, наблюдаемая вблизи оптически активных полос поглощения, изображена на рис. 43. На кривой ДОВ эффект Коттона проявляется в виде характерного изгиба, характеристикой которого является (см. рис. 20, стр. 47) его амплитуда (разность величин вращения в пике и впадине), ширина (разность длин волн, при которых расположены пик и впадина), спектральное положение пика и впадины (или средней точки между ними). На кривых кругового дихроизма (т. е. кривых, показывающих зависимость разности е — е<г от длины волны) эффект Коттона проявляется в виде полосы с интенсивностью Ае, шириной й и положением максимума при длине волны Хо. [c.292]

    При исследовании жидкостей с большим коэффициентом поглощения рентгенограммы получаются отражением от свободной поверхности образца. В этом случае дифракционная картина фиксируется с той стороны от поверхности жидкости, с которой на нее направляется первичный поток рентгеновского излучения. При этом угол между первичным пучком и горизонтальной поверхностью образца не должен превышать 8—10°, иначе интерференционные максимумы могут оказаться в области геометрической тени образца. [c.100]

    Если пут, то происходит переход атома из стационарного состояния с более высокой энергией на орбиту с меньшей энергией с выделением кванта лучистой энергии. При п<т наблюдается обратная картина с поглощением фотона. Атомы в основном (нормальном) состоянии могут только поглощать кванты света, переходя при этом в возбужденное состояние. Возбужденный же атом может как поглощать, так и испускать фотоны. Продолжительность пребывания атома в возбужденном состоянии порядка с. [c.34]

    Основной результат спектроскопического изучения водородной связи сводится к смещению полос поглощения соответствующих групп. Можно, конечно, спорить о правомочности отнесения этого смещения ма счет только водородных связей, но нас интересует лишь качественная картина явления. Если мы вспомним дисперсионную формулу рефракции (1.26), то можно видеть, что при Я=оо она вырождается в уравнение типа [c.203]

Рис. 162. Картина дополнительного поглощения энергии в феррите Рис. 162. Картина <a href="/info/1118977">дополнительного поглощения</a> энергии в феррите
    Анализируя картину поглощения энергии и преобразования ее в другие виды по приведенной выше схеме, легко убедиться в следующем. [c.74]

    Иная картина наблюдается при рассмотрении ИК-спектров самих алкидно-стирольных лаков с добавкой ингибитора акор и без добавки его, а также спектр самого ингибитора. Установлено, что при добавлении ингибитора в алкидно-стирольный лак в спектре ингибированного лака не появляются новые полосы поглощения ингибитора и чистого лака. Это указывает на то, что при добавлении ингибитора к лаку не происходит химического взаимодействия между ингибитором и компонентами лака, т. е. ингибитор акор находится в свободном состоянии. Можно предположить, что при воздействии воды или влаги [c.186]

    Выше было показано, что картина уровней энергии для предельных случаев сильного и слабого поля в октаэдрических комплексах совершенно различна. Измеряя магнитную восприимчивость основного состояния, можно определить, является ли оно высокоспиновым или низкоспиновым. Измеряя частоты полос поглощения, можно определить значение Д для лиганда. [c.267]

    Юнгом, Дювалем и Райтом [52] было обнаружено, что эти полосы являются строго характеристпчнымя для числа и положения заместителей в бензольном кольце и практически не зависят от природы заместителя. Этот спектр поглощения, по-видимому, дополняется частотами обертонов и комбинационными частотами. Обычно с уменьшением числа водородных атомов в кольце вид спектра упрощается. Общий характер поглощения в этой области имеет белее важное значение, чем простое указание положения спектральных полос и приближенные значения интенсивностей. Рис. 7, воспроизводимый из работы Юнга и других [52], дает наглядную картину полос поглощения в области 5—6 л для бензолов с различным типом замещения. [c.327]

    При адсорбции монооксида углерода на исходном образце наблюдаются полосы поглощегия 2150, 2173, 2193 и 2202 см" , соответствующие СО, адсорбированному на гидроксильных группах, катионах Мд " , А1 + и Сг +, соответственно. После адсорбции сероводорода картина адсорбции СО существенно меняется. Практически полностью исчезают полосы поглощения 2193 и 2202 см , соответствующие СО, адсорбированному на льюисовских кислотных центрах (ЛКЦ) ЛР+ и Сг и резко уменьшается количество бренстедовских кислотных центров (БКЦ) (2150 см ), тогда как количество адсорбированного СО на катионах Мд + увеличивается. Это может происходить благодаря разрушению структуры шпинели МдСгр с образованием, например, сульфатов или сульфитов хрома и освобождением дополнительного количества свободных катионов магния (рис. 4.17). [c.120]

    Добавка к воздуху, продуваемому через газойль каталитичеекога крекинга, даже небольших количеств озона интенсифицирует процесс окисления, что видно из следующих данных. В результате продувания воздуха через остаток парофазного термического крекинга при комнатной температуре, канцерогенная активность его череа 14 ч снизилась всего на 3%, а через 68 ч — на 6,5%. При этрм не было обнаружено поглощения кислорода крекинг-остатком Картина [c.291]

    Временную развертку спектральной картины технически удобнее осуществлять с помощью достаточно медленного периодического изменения напряженности магнитного поля около ее резонансчо-го значения Яо. При наступлении резонанса система ядерных магнитных моментов поглощает энергию высокочастотного магнитного поля, что приводит к увеличению активного сопротивления катушки индуктивности, т. е. к уменьшению добротности высокочастотного контура. Это вызывает периодическую амплитудную модуляцию высокочастотного напряжения на контуре. Напрял<ение усиливается, детектируется и подается на регистрирующий прибор (обычно катодно-лучевой осциллограф) с временной разверткой, синхронизированной с изменением магнитного поля. Дисперсионный компонент резонансного сигнала вызывает изменение реактивного сопротивления катушки, что ведет к фазовой модуляции, на которую амплитудный детектор не реагирует. Следовательно, регистрирующий прибор выписывает зависимость резонансного поглощения С от напряженности магнитного поля Я. Такая схема регистрации может быть применена только тогда, когда интенсивность сигнала ядерного резонанса заметно превосходит уровень шума применяемого усилителя. Интенсивность резонансного сигнала при прочих равных условиях пропорциональна отношению тг/ть поэтому наилучшее отношение сигнал/шум наблюдается для полимеров, у которых то достаточно велико (для каучуков). [c.218]

    Если теперь по общей формуле для С (VI.95) и значениям для отдельных сумм по состояниям подсчитать теплоемкости некоторые газов, в результате получится следующая картина. Поступательная составляющая во всех случаях равна 3/2 R = 2,98 калЫоль, как это и следует из принципа равномерного распределения энергии, согласно которому на одну степень свободы приходится энергия 1/2 RT или теплоемкость 1 /2 R. Этот принцип оправдывается и при вращательном движении. У двухатомных молекул имеется две степени свободы вращения, и соответствующий вклад вращения в теплоемкость равен R 1,99 кал град-моль. Это означает, что при 300° К вращательное движение возбуждено и вносит в поглощение энергии при повышении температуры вклад, соответствующий хаотическому распределению энергии по молекулам (см. рис. VI.15). При этой температуре максимум заселенности приходится на третий возбужденный уровень вращения и = 3). [c.238]

    J ня на первый возбужденный уровень вра-- щения У = 1. Расстояние между последующими линиями поглощения также составляет 2 Всм . На рис. VI.27, а стрелками показаны переходы между вращательными уровнями при поглощении радиации, а в нижней части рис. VI.27, б схематически изображен соответствующий спектр поглощения жесткого ротатора. Практически -S наблюдается картина поглощения типа изображенной на рис. VI.26. Как уже говорилось, минимумы пропускания света веществом соответствуют на этом рисунке линиям поглощения. Определяя расстояние между минимумами, находим 2В. Но так как В = Н./8лЧс, то, зная В, можно найти /, т. е. по спектру в далекой инфракрасной области определяется важная характеристика молекулы — ее момент инерции. По значению /, а также известным массам атомов по формуле (VI. 180) вычисляется межъядерное расстояние л Так, для хлористого водорода (см. рис. VI. 26) 2В = = /о = 20,68 см" , т. е. В = 10,34 см . Отсюда момент инерции молекулы НО / = 2,71 10 г-см . Если же считать приведенную массу ц = 1,63-10" г, можно найти межъядерное расстояние г = == 1,29-10 . Это значение г находится в удовлетворительном совпадении со значениями, определенными другими методами. [c.250]

    Следует отметить, что в силу своей избирательной способности (эффект может быть наблюден только на резонансных ядрах), эффект Мёссбауэра является незаменимым методом для исследования фазового состава сложных образцов, когда необходимо проводить идентификацию фаз, содержащих резонансный изотоп. В этом случае все остальные фазы не дают вклада в форму спектра поглощения и, следовательно, картина существенно упрощается. Такая необходимость часто возникает при работе с природными геологическими объектами и почвами. [c.218]

    Рассмотрим правильный октаэдрический комплекс , в котором центральный ион содержит один -электрон. Из рис. 41 видно, что исходный -уровень, о бозиачаемый символом D , в поле кубической симметрии расщепляется на два уровня, обозначаемых как eg (дважды вырожденный, содержащий 2 -электроны) и t2g (трижды вырожденный уровень, которому отвечают dry-, dyz- и жу-электроны). Между eg и /г -уровнями возможен переход электронов. В соответствии с этим в спектре должна присутствовать полоса поглощения. Такой случай реализуется в комплексе Т1(Н20)б , содержащем один -электрон. В соответствии со сказанным в спектре Т1(Н20)е проявляется одна полоса поглощения при 490/лц. Аналогичная картина наб- [c.310]

    Если измерять сигналы олефиновых протонов и одновременно насыщать образец радиочастотным полем на частоте протонов СНз-группы (O = 1,99 м.д. от ТМС), то спектр ПМР должен упроститься и дать картину поглощения системы АМХ, т. е. фрагмента СНа=СНб—СН=0. Если Jах = О, то протон Яд должен дать дублет, а протон И б — дублет дублетов (рис. 436, /). Из рисунка следует, что в более слабом поле находится сигнал протона Я , в более сильном — сигнал протона Нб- Дополнительным подтверждением такого вывода служит спектр 436, 3, который был получен для олефиновых протонов при одновременном насыщении образца на частоте протона формильной группы. Теперь картина поглощения отвечает системе АМХз, т. е. спектру фрагмента СНд—СНд = СНй-. [c.97]

    Таким образом, отличительным признаком всякого электрохимического процесса, протекающего на границе фаз электрод — электролит 1В гальванических элементах или электролитных ваннах, является непременное участие электрона. Электрохимия— отрасль химической науки, изучающая наиболее общие закоцы прев ращения веществ в электролитах и на границе фа электрод — электролит при поглощении либо отдаче молекулами, атомами или ионами электронов. Именно электронный переход и реакция между ионами и электронами на границе металл— раствор определяют наблюдаемые при электролизе превращения электрической энергии в новые химические вещества в электролитных ваннах либо глубокие качественные превращения вещества на полюсах элементов с возникновением электрического тока. Нетрудно заметить, что механизм электрохимических процессов существенно отличается от обычной картины химического превращения материи. [c.12]

    Задача 11.6. Как видно из рис. 11.6, полоса поглощения -перехода в комплексе [Ti (НгО) ] сильно раэмьгга, что обусловлено электронно-колебательными эффектами, но все же, как ожидается из картины расщепления уровней в октаэдрическом поле, в спектре водного раствора комплекса TI I3 6H2O [c.424]

    Задача 6.5. Как видно из рис. 58, полоса поглощения d— -перехода в комплексе [Т1(Н гО)бР сильно размыта, что обусловлено электронноколебательными эффектами (см. далее раздел 6.5), но все же, как ожидается из картины расщепления уровней в октаэдрическом поле, в спектре водного раствора комплекса Т1С1з-6Н20 имеется всего одна полоса электронного перехода. Если же определить спектр поглощения этого комплекса в твердой фазе, то обнаруживаются две полосы d— -переходов при 15 000 и 18 300 см . Объясните происхождение этих полос, отнесите их к определенным электронным переходам, свяжите объяснение с изменением структуры координационного узла комплекса в кристаллическом состоянии по сравнению с состоянием в растворе. [c.179]

    Скорость запрещенных по спину переходов может быть существенно изменена под влиянием внешнего окружения. Такое воздействие можно наблюдать при добавлении парамагнитных молекул в растворитель. Хотя О2 и N0 уменьшают выход фосфоресценции вследствие своего участия в эффективном бимолекулярном тушении, они вызывают одновременно рост скоростей оптического перехода и IS . Поглощение при переходе T l- -So также возрастает по интенсивности в тех случаях, когда присутствуют парамагнитные соединения. Например, поглощение при переходе Ti- -So в бензоле ( 310—350 нм) практически исчезает, когда удаляются последние следы кислорода. Наиболее драматическую картину поглощения 7- -S представляют растворы пирена, которые в обычном состоянии бесцветны, но приобретают насыщенный красный цвет в присутствии кислорода при высоком давлении. Тяжелые атомы в своем окружении способствуют также росту вероятности излучательных и безызлучательных переходов путем индуцирования заметного спин-орбитального взаимодействия в растворе. Так, растворы антрацена и некоторых его производных начинают слабее флуоресцировать при добавлении бромбензола, тогда как интенсивность триплет-триплетного поглощения возрастает в результате усиления IS Si T i. Как мы отмечали ранее, эти процессы наиболее значительны для переходов, включающих возбужденные состояния (л, л ). Спин-орбитальное взаимодействие всегда пренебрежимо мало в симметричных ароматических соединениях, и именно здесь изменение скоростей переходов под воздействием окружения наиболее заметно. В то же время сильное спин-орбитальное взаимодействие всегда существует в состояниях (п, л ), и в этом случае воздействие внешнего возмущения более слабое. Эти эффекты наблюдаются как в твердых, так и в жидких растворах. Например, фосфоресцент-ное время жизни в бензоле, растворенном в стеклообразной матрице при 4,2 К, уменьшается от 16 с в СН4 или Дг до 1 с в Кг и до 0,07 с в Хе отношение <рр/ф1 возрастает, и все процессы IS Si T i, T,- So+hv и Ti So протекают быстрее в растворителе с большей атомной массой. [c.107]

    На первой стадии образование батородопсина происходит за времена порядка десятков пикосекунд, а каждая последующая в 10 —10 раз медленнее предыдущей. Согласно современным представлениям, изменения обусловлены стерической невозможностью для прямого а11-гра с-ретиналя поместиться на поверхности опсина. Лишь изогнутый 11-4<ис-ретиналь вписывается в белок. Поглощение кванта света приводит к фотоизомеризации и тем самым к напряженным структурам, а в конце концов — к расщеплению химической связи между белком и хромофором. Переход к батородопсину влечет за собой изомеризацию ретиналя с образованием почти аИ-граис-формы, но такой, которая еще не релаксировала к самой низкоэнергетической геометрии. Более сильно релаксировавший а11-гранс-изомер появляется на стадии люмиродопсина. На каждой стадии белковый скелет перегруппировывается заметно выраженные изменения, связанные одной или более углубленными внутрь карбоксильными группами, становятся видимыми в метародопсине I. Образование метародопсина И сопровождается депротонированием шиффова основания, а также существенными изменениями липидной структуры. Именно метародопсин II з Jпy кaeт следующий набор биохимических стадий, которые мы коротко рассмотрим. Изменения оптического поглощения, по-видимому, согласуются с представленной картиной. Понижение энергии возбужденного состояния вследствие взаимодействия ретиналя с опсином приводит к длинноволновому сдвигу соответствующей полосы поглощения, причем чем сильнее взаимо-дейс№ие, тем сильнее сдвиг. Когда последовательно образуют- [c.239]

    Иначе обстоит дело, когда требуется выяснить строение быстро разрушающихся ассоциатов и комплексов с участием молекул компонента, концентрация которого в растворе велика. В пределе это может быть однокомпонентная жидкость. В таких случаях картина ассоциации и комплексообразования обычно усложняется. Анализ ее лучше выполнять несколькими независимыми методами, дополняющими и контролирующими друг друга. Когда среднее время жизни ассоциатов или комплексов в концентрированных растворах меньше 10" — 10 с, применение ИК-спектроскопии или ЯМР обычно указывает лишь на существование явлений ассоциации и комплексообразования. Обнаруживаются изменения химических сдвигов, смещения в ИК-спектре характеристических полос поглощения, аномальное изменение их интенсивности, появление новых полос, и факты порой дают косвенные основания для гипотез о структуре жидкой фазы. Но теории, однозначно связывающей инфракрасные спектры или спектры ЯМР со строением жидкостей, нет, поэтому гипотезы, основанные на данных об этих спектрах для концентрированных растворов нуждаются в проверке. Например, ИК-спектры жидкой уксусной кислоты исследуются около 40 лет. Спектры показывают, что в жидкой уксусной кислоте имеются водородные связи С—Н...0 но они не дают сведений о строении ассоциатов (СНзСООН), и их концентрациях. Одни из авторов утверждают, что уксусная кислота состоит из кольцевых димеров, другие находят цепочечные образования, третьи отмечают, что спектр связей О—Н...0 цепочечных и кольцевых ассоциатов одинаков и поэтому с помощью ИК-спектров эти структуры различать невозможно. Другой пример — жидкий диметилформамид. Спектры ЯМР дают основание считать, что в жидком диметилформамиде и его растворах присутствуют ассоциаты (СНз)2КСНО. Было высказано предположение, что молекулы диметилформамида в жидкой фазе образуют кольцевые димеры. Но, как вскоре выяснилось, наблюдавшиеся особенности спектров ЯМР главным образом обусловлены не ассоциацией, а влиянием реактивного поля. Оказалось, что ассоциаты (СНдМСНО) имеют в основном цепочечную структуру. [c.108]

    Аналогичная картина имеетместо и в примесных полупроводниках. Разнообразные оптические переходы в примесных атомах, индуцируемые падающим излучением подходящей частоты, приводят к образованию целого спектра примесного поглощения [4]. [c.424]

    Имеется возможность, например, по окончании хроматографического процесса получить на дисплее или на ленте самописца в изометрической проекции трехмерную картину элюции в координатах оптической плотности, времени и длины волны. Более подробные сведения об устройстве и перспективах использования таких детекторов для целей хроматографии можно найти в обзорной статье IFell et al.— J. liromatogr., 1983, 273, p. 3—17]. При исследовании белков II нуклеиновых кислот с их простыми, лишенными индивидуальных особенностей УФ-сиектрами поглощения особой нужды в этих сложных п дорогостоящих приборах, по-впдимому, нет. [c.101]

    Упомянем также работу, где фракционирование большого числа минорных нуклеозидов с помощью распределительной ТСХ на целлюлозе осуществляли вообще без использования радиоактивных изотопов, проводя визуальное детектирование пятен под УФ-светом. Правда, при этом авторам приходилось наносить на пластинку (в пятне диаметром 1,5 сл1) 2—3 оптические единицы, т. е. около 0,1 мг гидролизата тРНК, а в качестве пластинки пспользовать лист покрытой целлюлозой алюминиевой фольги размером 20 X 50 см, зато приведенная ими картина разделения нуклеозидов содержит около 40 пятен. Количественную оценку (для расшифровки структуры тРНК) проводили по УФ-поглощению элюатов из пятен [Rogg et al., 1976]. [c.495]


Смотреть страницы где упоминается термин ЭПР-поглощение картина: [c.183]    [c.336]    [c.240]    [c.217]    [c.295]    [c.758]    [c.377]    [c.425]    [c.84]   
ЭПР Свободных радикалов в радиационной химии (1972) -- [ c.16 ]




ПОИСК







© 2024 chem21.info Реклама на сайте