Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Таутомерия электронная

    Спектроскопия ЯМР широко и успешно применяется для исследования равновесных химических превращений и обменных процессов, при которых периодически меняется строение, а значит, электронное окружение магнитных ядер и спин-спиновое взаимодействие ядер, т. е. химические сдвиги б и константы /. К таким процессам относятся как внутримолекулярные превращения (заторможенное внутреннее вращение, инверсия пирамидальной системы связей у азота, инверсия циклов, таутомерия и т. д.), так и межмо-лекулярные обменные и другие равновесные химические реакции (протонный обмен в водных растворах карбоновых кислот, аммиака, лигандный обмен, рекомбинация ионов, биохимические взаимодействия фермент — субстрат и т. д.). [c.40]


    Все А-ароматич 6я-электронные системы Для А, имеющих атомы Н, связанные с атомом N, характерна прототропная таутомерия Такие А-довольно сильные к-ты, образуют соли с ионами металлов, кислотность возрастает в ряду имидазол < триазол < тетразол В то же время все А-основания (рК для 111-7,0, для VI и VII-2,5, для IV-1,3), образуют с к-тами азолиевые катионы, в к-рых сохраняется ароматич сопряжение, с алкилирую-щими агентами дают четвертичные соли Термич устойчивость А уменьшается с увеличением числа атомов N в цикле [c.55]

    В присутствии сильного основания и енол и кетон могут терять протон, при этом в обоих случаях образуется один и тот же анион (енолят-ион). Этот ион можно представить двумя структурами 97 и 98. Поскольку эти структуры отличаются местоположением электронов, они не являются таутомерами, а представляют собой канонические формы, гибрид которых со- [c.97]

    Это объясняется тем, что при таком течении реакции присоединения четырнадцати-я-электронная система антрацена переходит в две независимые бензольные шести-я-электронные системы и при этом теряется энергия сопряжения только двух я-электронов ( 50 кДж). Этим же можно объяснить, что 9-антрол может существовать также в форме 9-антрона, являющегося его устойчивым таутомером  [c.29]

    Рассмотренный выше случай енолизации может служить примером более общего явления таутомерии. Строго говоря, этот термин относится к любым обратимым взаимопревращениям изомеров, которые могут происходить в разных условиях. Практически же им пользуются обычно применительно к случаям изомеров, легко подвергающихся взаимным превращениям и различающихся только распределением электронной плотности и положением относительно подвижного атома или группы. Таким атомом в подавляющем большинстве таутомерных систем яв-, ляется атом водорода в этом случае говорят о прототропии. Хорошо известными примерами прототропии могут служить ацетоуксусный эфир и алифатические нитросоединения  [c.259]

    Зависимость между поглощением света и структурой молекулы носит эмпирический характер. Поэтому для установления структуры с помощью электронных спектров надо знать спектральные характеристики различных хромофоров. В видимой области поглощают хромофоры, содержащие кратные связи и способные к таутомерии. например ЫОг, —N0, —СООН, —СНО, —Ы = М— и др. Наличие некоторых групп, которые сами по себе не способны вызвать окраску, приводит к изменению поглощения хромофора. Такие группы называют ауксохромами. К ним относятся группы —ОН, —ЫНг и их различные алкильные производные. Примеры электронных спектров поглощения некоторых органических соединений приведены в разделе 4. [c.84]


    Это редкий вид таутомерии, при к-рой происходит лишь перераспределение электронной плотности без переноса к.-л. атомов. [c.618]

    Электронный сдвиг — полное перемещение с образованием новых связей и гетеролитическим разрывом старых, примером чему служат приведенные здесь изображения механизмов реакций. В этом случае кривая стрелка начинается с того атома (или от той связи, т. е. пары электронов), от которого перемещается пара электронов, и направляется на тот атом, к которому она переходит, или указывает па то место между двумя атомами обеих реагирующих молекул, между которыми возникает новая связь. Электронный сдвиг внутри одной молекулы обозначается как таутомер-ный сдвиг (Т). [c.133]

    Для данного типа соединений характерна кето-енольная таутомерия. За счет внутримолекулярного перемещения протона и одновремен ного смещения связующих электронов кето- и енольная формы превра щаются друг в друга  [c.369]

    В случае (3-кетокислот, на примере ацетоуксусного эфира, мы наблюдаем интереснейшее явление двойственной реакционной способности, называемое таутомерией. Применительно к указанному классу соединений, это явление названо кето-енольной таутомерией. Суть данного явления заключается в следуюш,ем карбонильная и карбоксильная функции, будучи сильными электроноакцепторами (-М-эффект), оголяют протоны метиленовой группы, расположенной между ними, что делает их кислыми. В силу этого водород в виде катиона может мигрировать к карбонильному кислороду несуш,ему на себе избыточную электронную плотность синхронно этому переходу электронная плотность карбонильной группы и а-связей метиленового фрагмента перераспределяется так, как это указано на схеме 2.2.4, образуя систему [c.26]

    Алкилирование хиназолонов. Вопрос о месте, по которому происходит алкилирование хиназолонов, сходен с проблемой, относящейся ко всем ароматическим азотосодержащим гетероциклическим системам, в которых оксигруппа находится в орто- или мара-положении к гетероциклическому атому азота. Такие соединения существуют в виде смеси таутомеров две таутомерные структуры могут взаимопревращаться при смещении одного протона и одной пары электронов. В щелочном растворе ионы этих соединений существуют как резонансные гибриды, причем две основные формы отличаются друг от друга только положением двух пар электронов, как показано на схеме [c.292]

    Правда, этот шаг назад ие оказал существенного влияния на судьбы структурной химии. Идеи о различной сродствоемкости , или энергоемкости, связей одержали верх. Уже с конца 1920-х годов появились такие электронные теории, которые служили преддверием квантовой химии и которые гакладьшали в понятие структуры молекулы и электронное содержание, и в то же время энергетическую неэквивалентность связей. Это были теории электронных смещений — мезомерии, электронной таутомерии, резонанса. [c.90]

    Проблема внутренней динамики молекул казалась после этого исчерпанной, если не считать одного относящегося к ней интригующего вопроса, выдвинутого в конце 1920 — начале 1930-х годов Л. Полингом в теории резонанса и В, В, Разумовским в теории >лектроиной таутомерии, Обе эти теории с иезчачительными ])аз-личиям,и предлагали общее положение о то / , что одно и то же соединение, нанример анилин, сундествует в фор,ме нескольких электронных таутомеров, представляя не смесь изомеров, а своего рода и.х резонансный гибрид  [c.95]

    Недоумение это остается и до сих пор, ибо у теории резонанса были столь же веские основания отказаться от объективизации резонанса, сколь значительными были они ири выдвижении этого положения. Здесь можно заметить только, что объективизация модели и идеализация объекта в моделировании — это две стороны единого процесса познания, и отказ от одной из этих сторон логически незакономерен. Вопрос же об объективизации резонансных структур является интригующим в другом отношении. Явление, сходное с резонансом и электронной таутомерией, хотя и fie идентичное им, обнарул<ено в последнее время экспег)1 <еРггально. [c.95]

    Предсказания относительно электронной таутомерии, таким образом, сбылись. Вопрос стоит теперь только в том, как широко она распространена и можно ли действителыно считать, что этот новый тип внутренней динамики молекул не связан с изменением относительного расположения атомов. Ведь изменения в межатомных расстояниях и валентных углах при такой изомеризации установлены достоверно. [c.96]

    Постепенное вырождение кайносимметрии при переходе к последующим периодам Системы, где развиваются вторично-периодические свойства, придали новое направление отбору природой биогенных элементов и, в частности, видимо, обусловили особенности роли К и атомов фосфора, серы и иода в живых организмах, давая тем самым начало проявлению химических индивидуальностей. Деление р- и -элементов на ранние и поздние, утверждая, как известно, ряд специфических их особенностей, в то же время создает и предпосылки к проявлению резко выраженных индивидуальных свойств. Так, элементы N и Р, стоящие на границе ранних и поздних р-элементов, обладают большим и удачно дозированным числом непарных электронов, а потому способны давать прочные кратные связи к этому же способу образования молекул склонны (в несколько меньшей степени) и их соседи по Системе С и О. Большая электронная плотность в области кратных связей вызывает частые проявления иррегулярных взаимодействий электронов в области перекрывания и создает мгновенно проявляемые случаи динамической корреляции и нарушения симметрии в электронной оболочке. Результатом оказывается электронное сопряжение одиночных и кратных связей, электронная делокализация, а с ними и протонная таутомерия. Все это приводит обычно к повышению реакционной способности около кратных связей и около временно возникающих электрических и магнитных моментов молекулы. [c.355]


    На примере этой реакции рассмотрим различие между таутомерией и мезомерией. Неточное понимание значения этих терминов часто ведет к путанице. Таутомерные соединения, представленные структурами XVII и XIX (кетонная и енольная формы), существенно различаются по своей химической сущности. Хотя соединения такого рода часто легко могут превращаться одно в другое, в некоторых случаях (например, для ацетоуксус-ного эфира) удается выделить и охарактеризовагь обе формы. В противоположность этому, образующаяся при взаимном превращении двух таутомеров промежуточная структура — карбанион XVIII — является мезомерным гибридом двух изображенных гипотетических структур, ни одна из которых не существует в действительности. Наличие подобных пар таутомеров, взаимопревращение которых осуществляется через общий карбанион, стабилизованный делокализацией электронов, представляет собой весьма распространенное явление. [c.260]

    Зависимость положения равновесия от строения таутомеров наиболее полно изучена для кето-енольных таутомерных систем и их близких аналогов, и мы ограничимся этими примерами. Равновесные соотношения между кето- и енольными формами часто могут быть оценены химическими методами, однако такого рода измерения обычно легче и удобнее провести спектроскопически, Значительное содержание енольной формы в кето-енольной системе при достижении таутомерного рг новесия может иметь место обычно только при наличии одного или нескольких заместителей, способных стабилизовать енол за счет делокализации я-электронов его двойной углерод-углеродной связи  [c.262]

    М. о. с. лежит в основе мол. спектрального анализа. Особое значение для анализа и исследования строения молекул имеют спектры в ИК области, к-рые возникают в результате колебат. (и вращат.) переходов и состоят из боль-шдго числа полос с четко выраженной структурой. Спектры в УФ и видимой областях связаны с электроино-колебат. переходами. Колебат. структура в Уф спектрах проявляется только при низких т-рах в обычных условиях она приводит К диффузным (размытым) спектрам, по к-рыи трудно проводить идентификацию соединений. Прн иаличии в молекуле хромофоров в УФ спектре появляются характерные полосы, что позволяет осуществлять групповой анализ. УФ спектроскопию широко используют для изучения электронного строения молекул, таутомерии, влияния заместителей на хим. св-ва аром, соед., для установления типа хим. связей, определения параметров пов-стей 1ютенц. энергии возбужд. электронных состояний молекул и т. д. Все виды М. о. с. используются для исследования кинетики хим. р-ций. [c.347]

    Кето-енольное равновесие, о котором идет речь, представляет собой один из видов прототропного равновесия (т. е. равновесия между соединениями, отличающимися только положением Н и электронов). Этот тип реакций называют также таутомерией или кето-енольной таутомерией. [c.367]

    Применение спектроскопии ЯМР. Спектроскопия ЯМР относится к неразрушающим методам анализа. Совр. импульсная ЯМР фурье-спектроскопия позволяет вести анализ по 80 магн. адрам. ЯМР спектроскопия - один из осн. физ.-хим. методов анализа, ее данные используют для однозначной идентификации как промежут. продуктов хим. р-ций, так и целевых в-в. Помимо структурных отнесений и количеств, анализа, спектроскопия ЯМР приносит информацию о конформационных равновесиях, диффузии атомов и молекул в твердых телах, внутр. движениях, водородных связях и ассоциации в жидкостях, кето-енольной таутомерии, металло- и прототропии, упорядоченности и распределении звеньев в полимерных цепях, адсорбции в-в, электронной структуре ионных кристаллов, жидких кристаллов и др. Спектроскопия ЯМР - источник информации о структуре биополимеров, в т. ч. белковых молекул в р-рах, сопоставимой по достоверности с данными рентгеноструктурного анализа. В 80-е it. началось бурное внедрение методов спектроскопии и томо-фафии ЯМР в медицину для диагностики сложных заболеваний и при диспансеризации населения. [c.519]

    У индолизина нет таутомеров, индол — потенциально таутомерное соединение, но ЗН-(индол настолько неустойчив по сравнению с нормальным 1Н-индолом, что его никогда не удается обнаружить. Изоиндол — бесспорно таутомерное соединение тем не менее он обладает настолько высокой реакционной способностью, что для простейшего индолизина до сих пор не удалось установить положение таутомерного равновесия. Для более устойчивого 1-фе-нилизоиндола найдено, что в СОСЦ он состоит из смеси 2Н- и ЗН-таутомеров в соотношении 9 1 менее сопряженный 1Н-таутомер вовсе не обнаружен в этой смеси. Таким образом, несмотря на кажущуюся невыгодность хиноидной структуры 2Н-изоиндолов, их 10 я-электронная ароматичность достаточна, чтобы стабилизировать эту структуру. [c.320]

    Необходимо отличать таутомерию от явления резонанса, о котором говорят в тех случаях, когда свойства молекул оказывается невозможно описать на основе одной валентной структуры и приходится прибегать к гибридизации двух или нескольких структур, в которых все ядра остаются на прежних местах. Переход из одной резонансной формы в другую связан лишь с перераспределением валентных электронов. Примером может служить енолят-анион, который можно рассматривать как гибрид структур А и В. Чтобы подчеркнуть, что изображены именно резонансные структуры, а не таутомеры или какие-либо другие изомеры, стрелки, изображаюш,ие переход между соответствующими формами, делают двунаправленными  [c.79]

    Мезомерный эффект можно назвать статическим эффектом сопряжения, ибо он свойствен и покоящейся молекуле , вне реакции. Однако в реакции смещение пар электронов, выражаемое такими же изогнутыми стрелками (английская символика), может зайти и дальше, до полного перемещения пары из октета одного атома в октет другого. Такой эффект может быть назван динамическим эффектом сопряжения. Обычно его называют электромерным эффектом или, чаще, таутомерным эффектом (Г-эффект), поскольку частным случаем его проявления являются перемещения электронов при таутомерии. Если пара электронов удаляется из октета интересующпо нас атома, эффект обозначается как —Г-эффект, < гли же пара передаогся иитересующему пас атому — тогда это +Г-эффект. [c.188]

    Спрашивается, однако, суш ествуют ли реально формы Б и В или это только реакционные формы , т. е. структуры, образуюп иеся в момент реакции под влиянием реагента. Другими словами, вопрос заключается в том, имеется ли здесь редкий случай валентной таутомерии с раздельным суш,ествованием индивидуальных изомерных веш еств А Б и 5, способных к взаимным превращ ениям по законам таутомерного равновесия. Подчеркнем, что такая валентная таутомерия связана трлько с перераспределением валентных связей, т. е. электронов, но не атомов (отсюда ее второе название — электронная таутомерия), и, таким образом, не относится ни к катйонотропной (стр. 421), ни к анионотропной таутомерии.  [c.575]

    Объяснение свойств системы изоиндол — изоиндоленин кроется,, по-видимому, в электронном строении изоиндола и его изоиндоленинового таутомера, а также в анализе возможного влияния на него заместителей различной природы. Расчеты электронного строения изоиндола (см. табл. 1.3) показывают, что атомы углерода в положении 1 и 3 обеднены электронами по сравнению с атомом азота. Введение электронодонорных групп в эти положения должно вести к компенсации указанного дефицита и к стабилизации молекулы в целом. С другой стороны, в молекуле изоиндоленина (1.1 ЭОЛ) атом углерода в положении 1 более обеднен ими, чем атом углерода в положении 3 в бензиль-ном фрагменте структуры. Следовательно, в этом случае введение электронодонорного заместителя к первому атому углерода ведет к стабилизации молекулы в целом. Ясно, что введение электронодонорного заместителя к бензильному атому углерода никакой стабилизации оказывать не будет. [c.61]

    В соответствии с этим механизмом частица 11.11 образует комплекс с Ог, превращаясь в 11.12. Перенос протона через растворитель и электронов через комплекс (гл. 9) может привести к комплексу 11.13, в котором кислород восстановлен до пероксида водорода, а остальная часть комплекса потеряла два электрона. Комплекс 11.13 находится в равновесии с пировиноградной кислотой, НгОг и соединением 11.14, которое следует рассматривать как таутомер имина аммиака с пиридоксалем. Соединение 11.14 легко распадается на исходные продукты [17]. [c.293]

    Вопрос о том, является ли закон Ламберта — Бера точным, обсуждался во многих работах. В настоящее время считают, что закон в основе своей правилен, хотя возможности его применения не столь универсальны, как предполагали раньше. Закон точно выполняется, если наблюдаемое поглощение обусловлено частицами одного типа. Это условие, однако, в ряде случаев нарушается поэтому имеет смысл указать на наиболее часто встречающиеся причины его невыполнения. Отклонения от закона Ламберта — Бера наблюдаются 1) когда различные формы поглощающих частиц находятся в равновесии, как, например, в случае таутомерии или кислотно-основного равновесия 2) в системах, имеющих ясно выраженную тенденцию к ассоциации либо молекул растворенного вещества между собой, либо между молекулами растворенного вещества и растворителя (например, в случае комплексов, образованных как за счет водородных связей, так и вследствие ван-дер-ваальсовых сил) 3) когда имеет место тепловое равновесие между основным состоянием и достаточно низко расположенным электронным уровнем возбужденного состояния (явление термохромизма). [c.85]

    Циклооктатетраен-1,3,5,7 (т. кип. 141 °С) находится в конформации ванны (симметрия U2d). Он не является ароматическим соединением и проявляет непредельный характер. Наряду с инверсией кольца, при которой не происходит какой-либо перестройки связующих электронов, для этого соединения наблюдается вырожденная обратимая валентная изомеризация (вырожденная валентная таутомерия), в которой принимают участие все четыре двойные связи С=С. Кроме того, для него характерна обратимая валентная изомеризация в (// -бицикло [4,2,0] ок-татриен-2,4,7, аналогичная процессу электроциклической перегруппировки гексатриена-1,3,5 в циклогекса диен-1,3. Для пояснения ниже приведены константы скорости k при 0°С, а также энергии активации [c.247]

    В ТО же время непредельность выражена у пиразолов меньше, чем у пирролов эти соединения труднее окисляются и восстанавливаются. Вследствие этого 4,5-дигидропиразолы 2чшразо лины) получают не прямым гидрированием пиразолов, а конденсацией ациклических соединений. Реакции 8е (нитрование, галогенирование, сульфирование) протекают преимущественно в положении 4. Замещённым пиразолам свойственна прототропная таутомерия, выражающаяся в миграции протона от "пиррольного" атома азота к неподелённой электронной паре двоесвязного атома азота  [c.27]


Смотреть страницы где упоминается термин Таутомерия электронная: [c.168]    [c.166]    [c.56]    [c.96]    [c.227]    [c.203]    [c.481]    [c.481]    [c.520]    [c.450]    [c.465]    [c.49]    [c.388]    [c.484]    [c.214]    [c.2093]    [c.204]    [c.299]    [c.327]    [c.210]   
Начала органической химии Книга первая (1969) -- [ c.575 ]

Начала органической химии Кн 1 Издание 2 (1975) -- [ c.538 ]




ПОИСК





Смотрите так же термины и статьи:

Таутомерия

Таутомерия таутомеры



© 2025 chem21.info Реклама на сайте