Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан и его сплавы физико-механические свойства

    Данные о коррозионной стойкости различных металлов и сплавов, а также неметаллических покрытий в водных растворах формальдегида [34, 35] приведены в Приложении 1. Для сравнения там помещены соответствующие данные для растворов муравьиной кислоты, не содержащих формальдегид, а также сведения о коррозионной агрессивности метанола. Как следует из сопоставления таблиц Приложения I, достаточно стойкими к воздействию растворов формальдегида при нормальной и повышенной температуре являются такие металлы, как чистое железо и алюминий, медь, никель, свинец, серебро, тантал, титан и др. Многие из этих металлов, а также платина, ниобий и цирконий мало подвержены коррозии и в присутствии значительных количеств муравьиной кислоты. Однако большинство перечисленных материалов либо слишком дефицитны, либо по физико-механическим свойствам непригодны для изготовления производственной аппаратуры. Из числа конструкционных материалов, применяющихся на практике, достаточно стойки по отношению к формалиновым растворам, в особенности при повышенной температуре, далеко не все. С учетом практической неизбежности накопления хотя бы небольших количеств муравьиной кислоты, непригодны для работы в формалиновых средах, помимо углеродистых сталей, хромистые сплавы, а также некоторые марки алюминия, бронзы, латуни, чугуна и т. д. Напомним, что в соответствии с действующим ГОСТом по коррозионной стойкости металлы разделяются на шесть групп и оцениваются по десятибалльной шкале, причем при скорости коррозии выше 0,1 мм/год материал считается пониженно стойким. [c.30]


    Из конструкционных металлов титан по своему распространению в природе находится на четвертом месте после железа, алюминия и магния. За последние два — три десятилетия в научно-технической литературе большое внимание уделяется титану и его сплавам — новым конструкционным материалам с исключительно благоприятным для многих условий эксплуатации сочетанием физико-механических свойств [2, 21, 57, 198—201]. Техническое значение титана и сплавов на его основе определяется следующими данными удельный вес титана 4,5 и, таким образом, титан и его сплавы по этой характеристике являются переходными между легкими сплавами на основе магния и алюминия, и сталями. Высокопрочные титановые сплавы имеют удельную прочность (отношение прочности к единице веса), соизмеримую с самыми высокопрочными сталями. [c.239]

    Титан и сплавы на его основе сочетают высокие физико-механические свойства, высокую коррозионную стойкость в агрессивных средах и удовлетворительную технологичность при переработке в изделия. При правильном использовании титана и его сплавов в соответствующих средах не только увеличивается срок безаварийной работы аппаратуры, но и резко сокращаются простои, поддерживаются оптимальные параметры технологического процесса. [c.5]

    Сплавы на основе титана. Физико-механические свойства и коррозионная стойкость технических марок титана могут быть в значительной степени повышены легированием их другими более стойкими элементами. Для изготовления титановых сплавов в качестве добавок берут элементы, образующие с титаном непрерывные или ограниченные твердые растворы двух-, трех- или многокомпонентных однофазных систем. Некоторые из этих сплавов обладают пределом текучести, достигающим 1000 Мн/л2. [c.285]

    Черные металлы — чугун и сталь, занимая исключительно важное место в промышленности и технике, часто служат объектом анализа. Число элементов, которое может находиться в железных сплавах, очень велико, чем и определяется большое разнообразие их физико-механических и химических свойств. Наряду с давно применяемыми легирующими элементами (такими, как хром, никель, кобальт, ванадий, вольфрам), в практику черной металлургии и в последние десятилетия вошли новые компоненты (например, редкоземельные, цирконий, гафний, титан, тантал, ниобий), добавки которых позволяют получать черные металлы с еще более ценными качествами. Кроме того, растет внимание и к ряду элементов, присутствие которых даже в малых количествах, может существенно изменять качество металла. Сюда относятся мышьяк, медь, олово, сурьма, алюминий, цинк и др. Содержание этих компонентов также контролируется, особенно в высококачественных сталях. [c.473]


    Чистейший, так называемый иодидный титан, получаемый термическим разложением тетраиодида титана в вакууме, очень пластичен и имеет сравнительно невысокую прочность. Его применяют, главным образом, для исследовательских целей. Содержание даже незначительных примесей в технически чистом титане (0,03—0,15 % кислорода, 0,01—0,04% N, 0,02—0,15% Ре, 0,01—0,05% Si, 0,01—0,03 % С) заметно повышает его прочностные свойства. Поэтому не только сплавы титана, но и непо средственно технически чистый титан (ВТ1—О и ВТ1—00) широко применяют, например в химической промышленности, в частности, в теплообменной аппаратуре. Однако разнообразие запросов техники, в начале главным образом из необходимости иметь возможно широкий спектр механических свойств и технологических обработок, а также в целях возможного повышения коррозионной стойкости металлического материала, стимулировали создание многочисленных титановых сплавов с разнообразными физико-химическими и технологическими свойствами [2, 200]. [c.243]

    Введение титана (в виде ферротитана — сплава с железом) в расплавленную сталь освобождает ее от растворенного азота, который уводится титаном в виде нитрида титана в шлак. При избытке титана получаются титанистые стали, превосходящие по физико-химическим и механическим свойствам обычные стали. [c.671]

    Цирконий соответственпо строению электронной оболочки н, следовательно, своему месту в периодической системе элементов Д. И. Менделеева является аналогом титана в физико-химическом отношении. Для металла циркония это выражается в подобии его титану в отношении физических, механических, технологических, коррозионных свойств и характера образуемых сплавов. Особенность циркония — низкое сечение захвата тепловых нейтронов — в сочетании с высокими конструкционными и коррозионными свойствами, тугоплавкостью сделала его очень ценным металлом в некоторых отраслях иромышленности. Поэтому в последние 15—20 лет происходит широкое освоение циркония разработка методов получения и осуществление производства циркония высокой чистоты, детальное исследование его свойств и сплавов. [c.3]

    Титан и титановые сплавы, обрабатываемые давлением, являются перспективными материалами для химического оборудования, laK как обладают высокими физико-механическими свойствами, коррозионной стойкостью и технологичностью. В химическом машиностроении применяют технически чистый титан ВТ 1-0, а также высокопрочные низколеигрированные титановые сплавы, химический состав которых приведен в табл. 67, а физико-механические свойства — в табл. 68. [c.100]

    Высокие антикоррозионные свойства и низкий удельный вес некоторых сплавов титана давно привлекают внимание згченых и инженеров, стремящихся использовать эти материалы для деталей движения, работающих с ударной нагрузкой, в частности для клапанных пластин. Однако в настоящее время в отечественном компрессоростроении титан и его сплавы не получили достаточно широкого распространения как материалы клапанных пластин компрессоров. Такое положение, очевидно, является следствием большого разнообразия сплавов титана с широким диапазоном физико-механических свойств, определенных трудностей механической обработки, а также трудностей, связанных с проведением ресурсных испытаний. [c.241]

    В настоящее время титан и его сплавы почти не находят применения при изготовлении аппаратуры для производства пергидроля, что, по-видимому, объясняется отсутствием достоверных данных, об их коррозионной стойкости в растворах перекиси водорода и способности катализировать ее разложение [1]. Между тем по своим физико-механическим свойствам эти сплавы могли бы применяться для этих целей и заменить хотя бы часть дефицитной стали Х18Н10Т, расход которой для аппаратурного оформления крупно-тоннажных производств очень велик. Однако это возможно лишь при отсутствии значительного каталитического влияния поверхности титана или его растворимых продуктов коррозии на разложение перекиси водорода. Поэтому определение совместимости титановых сплавов с растворами перекиси водорода представляет несомненный интерес. [c.123]

    Важность проблемы создания и применеяия Н0 вых химически стойких металлических материалов в различных отраслях нашей промышленности, особенно в химическом машиностроении, подчеркнута в Программе КПСС. За последние два десятилетия в связи с интенсификацией и разработкой новых технологических процессов, протекающих в агрессивных средах при высоких температурах и давлениях, значительно возрос интерес к использованию новых конструкционных материалов на основе тугоплавких и редких металлов, таких как титан, ниобий, ванадий, молибден. Эти металлы и их сплавы обладают весьма ценными физико-химическими и механическими свойствами, а по коррозионной стойкости во многих случаях значительно превосходят сплавы на основе железа и цветных металлов, которые являются до настоящего времени основными конструкционными материалами в химическом аппарато-строении. По сырьевым ресурсам и возможностям металлургической промышленности такие металлы, как титан и ниобий (а также и другие из числа тугоплавких), могли бы уже сейчас широко использоваться в химическом машиностроении. Однако их внедрение в эту отрасль промышленности идет сравнительно медленно. Одна из причин отставания — отсутствие необходимых сведений о свойствах этих металлов и их сплавов, в особенности об их химической стойкости и характере поведения в различных агрессивных средах. [c.65]


    Применение титана в металлургии сплавов и сталей известно сравнительно давно. Особенно успешно применяется легирование титаном сталей, в том числе и так называемой нержавеющей хромоникелевой стали марки 18-8, которой тптан сообщает еще более ценные антикоррозионные и технологические свойства. Добавки титана устраняют интеркристаллитную коррозию сварных швов в изделиях из нержавеющей стали. Известно, что легирование медных, никелевых и алюминиевых сплавов титаном сообщает им склонность к старению и улучшает их физико-механические и антикоррозионные свойства. [c.208]

    Коррозии подвержены основные конструкционные металлы— железо, алюминий, медь и титан. Эти металлы составляют основу конструкционных сплавов. Широкое применение получают также сплавы на основе магния для конструкций, не эксплуатирующихся в растворах электролитов. Именно поэтому они не вощли в число рассматриваемых ниже. Применение металлов в качестве конструкционных определяется не распространенностью их в земной коре, а комплексом физико-химиче-ских, технологических и механических свойств, которым должны удовлетворять конструкции. Распространенность элементов в земной коре такова, % А1 7,45 Ре 4,20 Mg 2,35 Т1 0,61 2п 0,02 Си 0,01 N 0 0,00003. [c.6]


Смотреть страницы где упоминается термин Титан и его сплавы физико-механические свойства: [c.75]    [c.502]    [c.326]   
Химическое оборудование в коррозийно-стойком исполнении (1970) -- [ c.11 , c.12 , c.122 ]




ПОИСК





Смотрите так же термины и статьи:

Основные физико-механические свойства титана и титановых сплаПрутки катаные из титановыя сплавов

Сплавы механические свойства

Сплавы свойства

Сплавы титана

Титан и его сплавы механические свойства

Титан, свойства

Титан, свойства, сплавы

Титана механические свойств

Физико-механические и технологические свойства сплавов титана

Физико-механические свойства



© 2025 chem21.info Реклама на сайте