Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан и его сплавы механические свойства

    Благодаря исключительно высокому сопротивлению коррозии титан — прекрасный материал для изготовления химической аппаратуры. Но главное свойство титана, способствующее все большему его применению в современной технике, — высокая жаростойкость как самого титана, так и его сплавов с алюминием и другими металлами. Кроме того, эти сплавы обладают жаропрочностью— способностью сохранять высокие механические свойства ири повышенных температурах. Все это делает сплавы титана весьма ценными материалами для самолето- и ракетостроения. [c.649]


    Способ получения титана и степень его чистоты оказывают существенное влияние на механические свойства металла особенно сильно влияет наличие в титане и его сплавах примесей кислорода, азота и водорода. Эти примеси способны давать с титаном твердые растворы внедрения, повышающие твердость, предел прочности и сильно снижающие пластические свойства металла. Наиболее пластичным и наименее прочным является титан, получаемый йодидным способом. [c.278]

    Из коррозионностойких металлов в химическом машиностроении широко применяется титан и его сплавы. Это объясняется его хорошими химическими, физическими и механическими свойствами. [c.215]

    Металлы с гексагональной упаковкой атомов в кристаллической решетке (например, титан и некоторые его сплавы) в отношении механических свойств при низких температурах занимают промежуточное положение между двумя предыдущими группами, приближаясь к металлам с объемноцентрированной кубической решеткой. Однако металлы последней группы при низких температурах ведут себя так, как будто у них отсутствует диапазон превращения [137, 138]. Схематично строение элементарных кристаллических ячеек различного типа представлено на рис. 43 [141]. [c.132]

    Даже технически чистый титан марки ВТ1 обладает механическими свойствами, соизмеримыми с механическими свойствами нержавеющих сталей, а легированием титана и термической обработкой сплавов на его основе можно достигнуть уровня прочности высокопрочных сталей. При этом особенно высока удельная прочность титановых сплавов, учитывая плотность железа и титана 7,8 и 4,5 г/см соответственно. Это достоинство титановых сплавов сохраняется в широком интервале температур от —253 до 500 °С. [c.66]

    Титан и цирконий имеют большое значение для металлургии. Главные свойства титана и его сплавов, способствующие все более широкому их применению, — высокая жаростойкость и жаропрочность (способность сохранять механические свойства при повышенных температурах). Благодаря этому Т1 и его сплавы используются в самолето- и ракетостроении. Титан почти вдвое тяжелее алюминия, но зато в три раза прочнее его. Это позволяет применять титан в машиностроении. Детали из титана и его [c.317]

    Сплавы титана, имеющие промышленное значение, делятся на три группы 1) сплавы, имеющие а-структуру (легированные А1, Sn, Zr), обладают хорошей свариваемостью, повышенной твердостью и пределом прочности сплавы с алюминием более стойки к окислению, чем чистый титан 2) сплавы, имеющие -структуру (легированные Мо, V, Сг и др.), хорошо свариваются после термообработки обладают хорошими механическими свойствами, но они термически неустойчивы 3) двухфазные сплавы а + (легированные А1 + тяжелые металлы) имеют высокую прочность при низкой и высокой температуре, но плохо свариваются [9, 10, 11]. [c.239]


    Большой интерес представляет процесс диффузии углерода, обычно направленный в сторону металла шва аустенитного класса. Протяженность зоны диффузии невелика. Изменение механических свойств в зоне науглероживания определяется характером сплавов (рис. 27. 5, 5 и 4) и Уд, т. е. долей менее легированного (основного) металла. На процесс диффузии (науглероживание) влияют карбидообразующие элементы хром, ниобий, титан и др. [c.379]

    Андреева В.В. и др. Исследования коррозионной стойкости, электрохимических и механических свойств и микроструктуры сплавов системы ниобий-титан. - В кн. Коррозия и защита конструкционных сплавов. М. Высшая школа, 1966, с. 178-183. [c.117]

    В качестве основы такого составного электрода помимо титана могут быть использованы тантал, в некоторых случаях цирконий или ниобий, а также различные сплавы этих металлов. Однако наибольшее техническое значение по сравнению с другими металлами имеет титан как по электрохимическим и механическим свойствам, так и по доступности. Поэтому настоящая глава посвящена в основном рассмотрению поведения титана, используемого как основа конструкции электрода. Об остальных пленкообразующих металлах (цирконий, ниобий и тантал) написано менее подробно. [c.107]

    Несколько более обстоятельно были исследованы сплавы редкоземельных металлов с титаном [438, 1240, 1915], в результате чего построена диаграмма состояния Ti — Се, однако числовые значения предельной растворимости церия как в а-, так и в Р-структуре титана не согласуются друг с другом. Все же можно сказать, что максимальная растворимость наблюдается вблизи точки перехода а- и Р-фазы, уменьшаясь с понижением температуры (для а-фазы) и повышением температуры (для Р-фазы). В сплавах с содержанием > 20% церия наблюдается расслоение фаз уже в жидком состоянии. Сплавы, приготовленные с небольшими количествами La, Gd, Ег и Y, показывают значительное уменьшение зерна, тогда как механические свойства, по-видимому, заметно не меняются, хотя имеются данные о том, что присутствие лантана или церия влияет на твердость сплава [438]. Образования интерметаллических соединений в этих системах не отмечено. [c.28]

    Данные о коррозионной стойкости различных металлов и сплавов, а также неметаллических покрытий в водных растворах формальдегида [34, 35] приведены в Приложении 1. Для сравнения там помещены соответствующие данные для растворов муравьиной кислоты, не содержащих формальдегид, а также сведения о коррозионной агрессивности метанола. Как следует из сопоставления таблиц Приложения I, достаточно стойкими к воздействию растворов формальдегида при нормальной и повышенной температуре являются такие металлы, как чистое железо и алюминий, медь, никель, свинец, серебро, тантал, титан и др. Многие из этих металлов, а также платина, ниобий и цирконий мало подвержены коррозии и в присутствии значительных количеств муравьиной кислоты. Однако большинство перечисленных материалов либо слишком дефицитны, либо по физико-механическим свойствам непригодны для изготовления производственной аппаратуры. Из числа конструкционных материалов, применяющихся на практике, достаточно стойки по отношению к формалиновым растворам, в особенности при повышенной температуре, далеко не все. С учетом практической неизбежности накопления хотя бы небольших количеств муравьиной кислоты, непригодны для работы в формалиновых средах, помимо углеродистых сталей, хромистые сплавы, а также некоторые марки алюминия, бронзы, латуни, чугуна и т. д. Напомним, что в соответствии с действующим ГОСТом по коррозионной стойкости металлы разделяются на шесть групп и оцениваются по десятибалльной шкале, причем при скорости коррозии выше 0,1 мм/год материал считается пониженно стойким. [c.30]

    Из конструкционных металлов титан по своему распространению в природе находится на четвертом месте после железа, алюминия и магния. За последние два — три десятилетия в научно-технической литературе большое внимание уделяется титану и его сплавам — новым конструкционным материалам с исключительно благоприятным для многих условий эксплуатации сочетанием физико-механических свойств [2, 21, 57, 198—201]. Техническое значение титана и сплавов на его основе определяется следующими данными удельный вес титана 4,5 и, таким образом, титан и его сплавы по этой характеристике являются переходными между легкими сплавами на основе магния и алюминия, и сталями. Высокопрочные титановые сплавы имеют удельную прочность (отношение прочности к единице веса), соизмеримую с самыми высокопрочными сталями. [c.239]

    Чистейший, так называемый иодидный титан, получаемый термическим разложением тетраиодида титана в вакууме, очень пластичен и имеет сравнительно невысокую прочность. Его применяют, главным образом, для исследовательских целей. Содержание даже незначительных примесей в технически чистом титане (0,03—0,15 % кислорода, 0,01—0,04% N, 0,02—0,15% Ре, 0,01—0,05% Si, 0,01—0,03 % С) заметно повышает его прочностные свойства. Поэтому не только сплавы титана, но и непо средственно технически чистый титан (ВТ1—О и ВТ1—00) широко применяют, например в химической промышленности, в частности, в теплообменной аппаратуре. Однако разнообразие запросов техники, в начале главным образом из необходимости иметь возможно широкий спектр механических свойств и технологических обработок, а также в целях возможного повышения коррозионной стойкости металлического материала, стимулировали создание многочисленных титановых сплавов с разнообразными физико-химическими и технологическими свойствами [2, 200]. [c.243]


    Танкеры изготавливают из алюминиевого сплава, имеющего следующий состав, % кремний 0,4 железо 0,4 медь 0,1 марганец 0,4-1,0 магний 4-4,9 хром 0,05-0,25 цинк 0,25 титан 0,15 другие примеси 0,15 остальное — алюминий. Главным преимуществом алюминиевого сплава является то, что его механические свойства улучшаются при рабочих криогенных температурах. Это подтверждается многочисленными испытаниями, и поэтому при проектировании танков запас прочности при рабочей температуре был принят равным 3,5, в то время как при нормальной температуре он равен 4. Сферический танк опирается на юбку, окружающую танк по экваториальному поясу, благодаря чему обеспечивается равномерное распределение нагрузок. Пространство, окружающее грузовые танки, заполняется осушенным воздухом, который непрерывно контролируется на влажность и содержание горючих газов. Если содержание горючих газов достигает 30 % от нижнего предела взрываемости, то автоматически включается аварийная сигнализация, а пространство вокруг грузовых танков заполняется инертным газом. В каждом грузовом танке устанавливаются по два погружных насоса с электроприводом. В системе слива использованы трубы из нержавеющей стали, т. к. алюминий имеет сравнительно низкую точку плавления и при пожаре применяемые трубы могут быть повреждены огнем. [c.634]

    Механические свойства (предел прочности, угол загиба) сварных соединений титановых сплавов с а-структурой (технический титан и сплавы на основе систем Ti — Al, Ti — Sn, Ti — Zr), а также а -i- -сплавы с преобладанием а-структуры с содержанием -стабилизаторов до 2% [сплавы систем Ti—2—4% AI — 1.5 "/о Мп и Ti — 3% Al — 1,5% (Fe, r, Si, В)] близки к свойствам основного металла. [c.274]

    В тех же целях применяют сплавы на основе кобальта. Большая распространенность никелевых сплавов объясняется в основном их большей изученностью и меньшей стоимостью. Эксплуатационные же свойства сплавов на основе никеля и кобальта практически идентичны. Но механизмы прочности разные. Высокая прочность никелевых сплавов с титаном и алюминием объясняется образованием фазы-упрочнителя состава №дА](Т1) чем больше в сплаве титана и алюминия, тем выше его механические свойства. Но при высоких температурах эксплуатации частицы фазы-упрочнителя переходят в раствор, и тогда сплав довольно быстро разупрочняется. [c.42]

    Вряд ли какой-либо другой металл привлекал к себе в последнее время такое пристальное внимание, как титан. Титан и его сплавы благодаря сочетанию ценных механических свойств с малой плотностью занимают промежуточное место между легкими металлами и сталями. Технические сплавы титана по своей прочности превосходят легкие металлы. Отношение прочность вес у холоднотянутого титана близко, к значению этого отношения у высокопрочных сталей. [c.425]

    Титан. В последнее время в химическом машиностроении и на химических предприятиях все шире начинают применять новый коррозионностойкий конструкционный материал — титан. По механическим свойствам титан не уступает углеродистым сталям, а по химической стойкости намного превосходит их. Применяемый для титановых труб и арматуры сплав ВТ1 имеет предел прочности при растяжении 450—600 МПа (45—60 кгс/мм ) и относительное удлинение 25%. Плотность этого сплава равна всёго 4500 кг/м . Титан является отличным материалом для оборудования, работающего в агрессивных средах в присутствии следов окислителей. Кроме того, он стоек к действию азотной кислоты. Верхний температурный предел применения титанового сплава ВТ1 достигает 350°С. [c.9]

    Сплавы на основе титана. Физико-механические свойства и коррозионная стойкость технических марок титана м.огут бь[ть в значительной степени повышены легированием пх другими 6o iee toiikhmh элементами. Для изготовления титиио-вых силавов в качестве добавок берут элементы, образующие с титаном непрерывные или ограниченные твердые растворы двух-, трех- или многокомпонентных однофазных систем. Некоторые из этих спла вон обладают пределом текучести, достигающим 1000 Mн/ i . [c.285]

    В этой группе сплавов наибольшее распространение получили сплавы алюминия с марганцем в количестве 1—1,6% Мп (сплавы марки АМц) и сплавы алюминия с магнием в количестве 0,5—7% Mg (сплавы марки АМг— так называемые магналии). Примеси железа и кремния ухудушают свойства сплавов, поэтому содержание их допускается не более 0,5—0,7%. Магналии склонны к образованию крупного зерна, что устраняют модифицированием сплава титаном, ванадием, цирконием. Химический состав и механические свойства алюминие-вомарганцевистых и алюминиевомагниевых сплавов приведен в табл. 11.2. [c.48]

    Титан и его сплавы хорошо сопротивляются знакопеременным и циклическим нагрузкам. Для титана соотношение между пределами выносливости и прочност -равно 0,85, тогда как это соотношение у сталей соот ветствует 0,5, а у алюминиевых сплавов 0,3. Учитыва высокую выносливость и коррозионную стойкость, тита новые сплавы особенно выгодно применять в условиях требующих сопротивления коррозионной усталости. Пр1 температуре ниже нуля предел усталости титановы сплавов повышается, при этом улучшаются и други< механические свойства. Титан не склонен к хладолом кости. [c.66]

    Титан и цирконий имеют большое значение для металлургии. Главные свойства титана и его сплавов, способствующие все более широкому их применению, — высокая жаростойкость и жаропрочность (способность сохранять механические свойства при повышенных температурах). Благодаря этому Т1 и его сплавы используются в самолета-и ракетостроении. Титан лишь немного тяжелее алюминия, но в три раза прочнее его. Это позволяет применять титан в машиностроении. Детали из титана и его сплавов в двигателях внутреннего сгорания снижают массу этих двигателей примерно на 30%. Присадка титана придает стали твердость и пластичность, а присадка циркония — твердость и вязкость. К важнейшим сплавам циркония относятся циркаллоны — сплавы на основе 2г,содержащие небольшие количества Зп, Ре, Сг и N1. Цирконий добавляют к меди, что значительно повышает ее прочность, не снижая электрической проводимости. Качество алюминиевых сплавов также значительно повышается при добавлении к ним циркония. [c.285]

    Титан, цирконий и гафний используются как легирующие добавки к специальным сплавам. Они улучшают механические свойства, повышают пластичность, твердость и коррозионную стойкост 5 сплавов. Порошки титана, циркония и гафния используются как поглотители газов (геттеры). Более легкий по сравнению с другими -металлами титан широко применяется также для изготовления турбинных двигателей, корпусов самолетов и морских судов. Особо чистый цирконий используется в качестве конструкционного материала для термоядерных реакторов. Гафний обладает исключительной способностью к захвату нейтронов стержни из этого металла применяются в ядерной технике. Оксиды циркония, титана и гафния находят применение в качестве материалов дл>1 изготовления тугоплавких и химически стойких тиглей и электродов МГД-генераторов. Ti02 используется в качестве красителя (титановые белила). Из карбидов титана и циркония изготовляют шлифовальные круги. Титанат бария (ВаТЮз) широко исполь.-зуется в пьезоэлектрических датчиках. [c.514]

    Лигатур Ы.1Б металлургии черных и цветных металлов титан применяется в качестве раскислителя и деазотизатора, так как он энергично соединяется с кислородом и азотом, образуя соединения, уходящие в шлак.сЛля этой цели используют ферротитан (18—25% Т1), купротитан (5—12% Т1), алютит (40% А1, 22—50% Т1 и до 40% Си). Очистка от кислорода способствует образованию тонкой плотной структуры стали, обладающей повышенными механическими свойствами. Титан связывает и серу, вызывающую красноломкость стали, х/ При введении титана в качестве легирующей добавки в хромо-никелевые нержавеющие стали (до 0,8%) образуются включения карбидов титана, повышающие жаростойкость и уменьшающие склонность к межкристаллитной коррозии при сварке и термической обработке. У Присадка 0,05—0,15% титана к обычной углеродистой стали облагораживает ее и улучшает механические свойства. Введение титана в алюминиево-магниевые сплавы (до 0,6%) улучшает их механические свойства, повышает коррозийную стойкость и устойчивость к окислению при нагревании [II, 35]. [c.242]

    Титан и его сплавы обладают высокими механическими свойствами, малой плотностью, а также коррозионной стойкостью. Титан практически коррозионностоек в таких агрессивных средах, как влажный хлор. [c.75]

    Подобные алюминиевые покрытия эффективны для защиты крепежных изделий из высокопрочной стали, титана и алюминиевых сплавов, эксплуатируемых в морской воде. Для защиты подшипников из углеродистой стали от коррозии были применены ионные покрытия из нержавеющей стали 304, а алюминиевых — из нержавеющей стали 310 [70]. Покрытия из алюминия, золота и нержавеющей стали наносят на крепежные изделия и другие мелкие детали для защиты их от коррозии и улучшения механических свойств. Особенности технологии нанесения ионных покрытий на мелкие детали рассмотрены в работе [71]. Для защиты от коррозии отдельных узлов установок газификации угля предложено наносить покрытия толщиной 10—100 мкм из А12О3. На тонкое покрытие, нанесенное методом ионного осаждения, можно наносить толстое покрытие гальваническим методом. Например, можно сочетать процесс ионного осаждения медного покрытия толщиной 25 мкм на титан с последующим осаждением толстого (500 мкм) слоя меди в обычной гальванической ванне (чисто гальваническим методом медное покрытие на титан осаждать не удается) [70]. Особенно перспективен метод ионного осаждения при нанесении покрытий на непроводящие детали (карбид вольфрама, пластмассы, керамику и др.), т. е. на детали, на которые другими методами осадить металлические покрытия сложно или вообще нельзя. [c.129]

    Титан и титановые сплавы, обрабатываемые давлением, являются перспективными материалами для химического оборудования, laK как обладают высокими физико-механическими свойствами, коррозионной стойкостью и технологичностью. В химическом машиностроении применяют технически чистый титан ВТ 1-0, а также высокопрочные низколеигрированные титановые сплавы, химический состав которых приведен в табл. 67, а физико-механические свойства — в табл. 68. [c.100]

    Высокие антикоррозионные свойства и низкий удельный вес некоторых сплавов титана давно привлекают внимание згченых и инженеров, стремящихся использовать эти материалы для деталей движения, работающих с ударной нагрузкой, в частности для клапанных пластин. Однако в настоящее время в отечественном компрессоростроении титан и его сплавы не получили достаточно широкого распространения как материалы клапанных пластин компрессоров. Такое положение, очевидно, является следствием большого разнообразия сплавов титана с широким диапазоном физико-механических свойств, определенных трудностей механической обработки, а также трудностей, связанных с проведением ресурсных испытаний. [c.241]

    Ракетная техника и космические корабли требуют, как известно, особожаропрочных металлов с высокими механическими свойствами. В печати США появились сообщения о том [236], что этим требованиям могут удовлетворять некоторые сплавы молибдена с титаном, цирконием, вольфрамом и углеродом. Последний является обязательным компонентом этих сплавов [от 0,02 до 0,5% (вес.)], остальные металлы вводятся, в зависимости от качества сплава, по одному или по два. Подобные сплавы сохраняют достаточно высокие механические свойства вплоть до температур 1300—1600° С. [c.98]

    Ванадий играет огромную роль в металлургии как легирующий элемент. В связи с этим за последние годы подробно исследованы механические свойства как самого ванадия разной степени чистоты, так и его сплавов с различными металлами изучена структура этих сплавов, их коррозионная устойчивость в различных средах. Изучены также диаграммы состояния ванадия не только со многими металлами, но и с неметаллами. Подробные данные приводятся в монографиях А. Ю. Полякова [241] и У. Ростокера [242]. Особое внимание уделяется системам титан — ванадий, поскольку они лежат в основе некоторых пластичных титанванадиевых конструкционных сплавов [244, 245]. [c.104]

    Важность проблемы создания и применеяия Н0 вых химически стойких металлических материалов в различных отраслях нашей промышленности, особенно в химическом машиностроении, подчеркнута в Программе КПСС. За последние два десятилетия в связи с интенсификацией и разработкой новых технологических процессов, протекающих в агрессивных средах при высоких температурах и давлениях, значительно возрос интерес к использованию новых конструкционных материалов на основе тугоплавких и редких металлов, таких как титан, ниобий, ванадий, молибден. Эти металлы и их сплавы обладают весьма ценными физико-химическими и механическими свойствами, а по коррозионной стойкости во многих случаях значительно превосходят сплавы на основе железа и цветных металлов, которые являются до настоящего времени основными конструкционными материалами в химическом аппарато-строении. По сырьевым ресурсам и возможностям металлургической промышленности такие металлы, как титан и ниобий (а также и другие из числа тугоплавких), могли бы уже сейчас широко использоваться в химическом машиностроении. Однако их внедрение в эту отрасль промышленности идет сравнительно медленно. Одна из причин отставания — отсутствие необходимых сведений о свойствах этих металлов и их сплавов, в особенности об их химической стойкости и характере поведения в различных агрессивных средах. [c.65]

    Исследование механических свойств сплаво в показало, что значения предела прочности возрастают с увеличением содержания молибдена до 15%. У сплава титан— 15% молибдена предел прочности достигает максимальных значений (120 кГ/мм ), после чего снижается и для сплавов с 20 и 30% молибдена составляет 93 кГ/мм . Относительное удлинение снижается с увеличением предела прочности и повышается с его уменьшением. Для сплавов титана с 20 и 30% молибдена удлинение составляет 15—16%. Сплав с 10% молибдена, после нагрева до 1100° С, закалки в воде и последующего отжига при 800° С (в течение 2 час.) имеет мелкозернистую двухфазную структуру (а-ЬР). Сплавы с 15, 20 и 30% молибдена имеют рекристаллизованную структуру р-твердого раствора. Стабилизация р-фазьг неполная. [c.66]

    Впервые о возможности получения сплавов d—Ti я Zn—Ti из цианистых электролитов было сообщено в [77]. В [78] описан технологический процесс электроосаждения сплава d—Ti на детали самолетов из высокопрочных сталей 4340, применяемый на заводах фирмы Боинг . Растворимую соль титана получали следующим образом. Фирменная титановая паста, содержащая 15% титана, наносилась на фильтровальную ткань. Затем паста растворялась с помощью перекиси водорода и через фильтровальную ткань переводилась в цианистую ванну кадмирования ( d 21—26 г/л, Na N 97—128 г/л, NaOH 15—19 г/л, Nas Os 37,5 г/л). Из-за нестабильности перекисных титановых соединений содержание титана в ванне должно постоянно корректироваться. Корректировка производилась при непрерывном растворении и фильтрации титана через фильтровальную ткань также с помощью перекиси водорода. Содержание титана в электролите составляло 0,24—0,41 г/л. На изделие вначале наносится тонкая пленка сплава в течение 15 сек. при повышенной плотности тока 4,3—4,8 а/дм . Затем электролиз ведут при обычной плотности тока 1,6—3,2 а/дм . Содержание титана в осадке составляет обычно 0,1—0,5%. Указывается, что после осаждения такого покрытия толщиной 12,5 мк для восстановления механических свойств изделий требовалось всего 2 часа прогрева при температуре 190° по сравнению с обычными 24 часами. Для надежности на производстве прогрев производили в течение 12 час. По мнению авторов, снижение наводороживания стали при электроосаждении сплава d—Ti объясняется, во-первых, тем, что титан сам поглощает значительные количества водорода, и, во-вторых, частич- [c.204]

    В процессе осаждения И—40 а/дм ) перекисное титановое соединение восстанавливается водородом, выделяющимся на катоде, до гидроокиси титана (1). Эта гидроокись, осаждающаяся с кадмием на катоде, является очень активной и также будет восстанавливаться водородом по реакциям (2) — (4) до тех пор, пока не начнет осаждаться титан, способный давать с кадмием сплав. Из приведенных реакций видно, что в процессе электроосаждения на восстановление одного атома титана требуется восемь атомов водорода. Такой большой расход водорода и является одной из причин снижения наводороживания стали. Другой причиной уменьшения наводороживания, по мнению авторов, является то, что из-за химического сродства титана к водороду титан будет ускорять реакцию молизации Н + Н- Нг Исследования, проведенные с помощью метода Лоуренса, а также статические испытания разрывных образцов показали, что электроосаждение из цианистых растворов, содержащих пертитанаты, приводит как к снижению наводороживания стали, так и к уменьшению времени прогрева, необходимого для полного восстановления механических свойств стали. Анализ электроосадков показал, что в покрытиях содержится 0,2—0,34% титана. [c.206]

    В настоящее время титан и его сплавы почти не находят применения при изготовлении аппаратуры для производства пергидроля, что, по-видимому, объясняется отсутствием достоверных данных, об их коррозионной стойкости в растворах перекиси водорода и способности катализировать ее разложение [1]. Между тем по своим физико-механическим свойствам эти сплавы могли бы применяться для этих целей и заменить хотя бы часть дефицитной стали Х18Н10Т, расход которой для аппаратурного оформления крупно-тоннажных производств очень велик. Однако это возможно лишь при отсутствии значительного каталитического влияния поверхности титана или его растворимых продуктов коррозии на разложение перекиси водорода. Поэтому определение совместимости титановых сплавов с растворами перекиси водорода представляет несомненный интерес. [c.123]

    Сплавы на основе титана, изготовляемые промышленностью обладают высокими механическими свойствами по сравнению с нелегированным титаном, но в ряде случаев имеют пониженнз ю коррозионную стойкость. Проблеме создания коррозионностойких сплавов на основе титана уделяется большое внимание. Установлено, что подходящим легированием можно повышать химическую стойкость титана. Нарщено, в частности, что легирование титана молибденом, танталом, цирконием, медью, палладием, платиной, иридием и др. повышает его коррозионную стойкость [1—5]. [c.173]


Смотреть страницы где упоминается термин Титан и его сплавы механические свойства: [c.358]    [c.243]    [c.74]    [c.75]    [c.13]    [c.13]    [c.502]    [c.456]    [c.425]   
Морская коррозия (1983) -- [ c.400 , c.402 , c.404 ]




ПОИСК





Смотрите так же термины и статьи:

Классификация и механические свойства сплавов титана

Основные физико-механические свойства титана и титановых сплаПрутки катаные из титановыя сплавов

Сплавы механические свойства

Сплавы свойства

Сплавы титана

Титан и его сплавы физико-механические свойства

Титан, свойства

Титан, свойства, сплавы

Титана механические свойств

Физико-механические и технологические свойства сплавов титана



© 2025 chem21.info Реклама на сайте