Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозионная стойкость металлических материалов в газ

    Основное содержание справочника составляют таблицы коррозионной стойкости. В первой графе таблиц приводится наименование материала, процентный состав его (по массе) и марка отечественного материала, близкого к нему по составу (указывается в скобках). Если материал выпускается промышленностью, то указывается только его марка, а состав определяется соответствующими ГОСТами. Условия предварительной термической или механической обработки материалов, если они известны, указываются в примечании или рядом с маркой материала. Материалы располагаются в следующем порядке. Вначале идут металлические материалы, которые начинаются с железа и железных сплавов как наиболее широко применяющиеся в практике. Затем следуют в алфавитном порядке наиболее распространенные металлы и сплавы алюминий и его сплавы, магний и его сплавы, медь и ее сплавы, никель и никелевые сплавы, титан и титановые сплавы. После этого в алфавитном порядке размещаются другие металлы и их сплавы. В последней части таблиц приводится химическая стойкость неметаллических материалов (по алфавиту). Скорость коррозии металлов и сплавов характеризуется потерей массы ( , г/м .ч) или глубинным показателем коррозии (/г , мм/год). Длительность коррозионных испытаний приводится в примечаниях или в отдельном столбце таблицы. Продолжительность испытания оказывает влияние на скорость коррозии (в частности, на среднюю скорость коррозии). Как правило, при более длительных испытаниях средняя скорость коррозии становится меньше. Большое влияние на скорость коррозии могут оказать перемешивание среды и примеси. В таблицах, по возможности, отмечены эти особенности. [c.4]


    Иттрий — один из наиболее рассеянных элементов, что наряду со сложной технологией его добычи и рафинирования является причиной более позднего вовлечения металлического иттрия в технику. До недавнего времени иттрий, как и редкоземельные металлы, применяли, главным образом, в качестве легирующей добавки, улучшающей структуру, механические свойства, жаростойкость и коррозионную стойкость ряда сплавов. Однако в последнее время некоторые свойства иттрия (малое сечение захвата тепловых нейтронов, небольшая плотность (4,47 г/см ), относительно высокая температура плавления (1510 °С), отсутствие полиморфных превращений до температуры плавления и почти уникальное свойство иттрия — не взаимодействовать с расплавленным ураном и его сплавами — сделали перспективным его применение как конструкционного материала в атомной энергетике. [c.312]

    Для борьбы с коррозией теплообменников внутреннюю или наружную поверхность металлических труб и внутреннюю поверхность кожухов облицовывают стеклом применяют плакировку, сочетающую механическую прочность одного металла с коррозионной стойкостью другого. Так, тонкий слой нержавеющей сталп прокаткой соединяют с листом обычной углеродистой стали. Применяют иногда электролитические или химические покрытия, образующие противокоррозионную пленку на конструкционных материалах. При случае несовместимости прокачиваемой жидкости с материа.1 ами труб используют биметаллические трубы, например из никелевого сплава с одной стороны и алюминиевого — с другой. [c.270]

    Вопрос выбора материала решетки решается более просто. Керамические материалы обладают большой коррозионной стойкостью и выдерживают высокие температуры, по их прочность низка при температурных колебаниях и напряжениях расширения. Кроме того, керамика относительно легко подвержена эрозии, в результате чего происходит постепенное увеличение размеров отверстий или пор. Как правило, предпочтение отдают металлическим распределителям, из-за их прочности и дешевизны. Более того, вследствие охлаждения среды входящим газом, они в меньшей степени подвержены корродирующему воздействию и влиянию высоких температур. [c.85]

    В сухом хлористом водороде при комнатной или близких к ней температурах удовлетворительно стойки ряд металлов и их сплавов. С повышением температуры стойкость металлических материалов постепенно снижается до определенной для каждого металла температуры. При температуре выше предельной скорость коррозионного разрушения быстро возрастает и материал уже не может считаться стойким в этих средах. Максимальные температуры, допустимые при длительной работе в среде сухого хлористого водорода, для различных металлов и их сплавов [971 приведены ниже  [c.511]


    Чистейший, так называемый иодидный титан, получаемый термическим разложением тетраиодида титана в вакууме, очень пластичен и имеет сравнительно невысокую прочность. Его применяют, главным образом, для исследовательских целей. Содержание даже незначительных примесей в технически чистом титане (0,03—0,15 % кислорода, 0,01—0,04% N, 0,02—0,15% Ре, 0,01—0,05% Si, 0,01—0,03 % С) заметно повышает его прочностные свойства. Поэтому не только сплавы титана, но и непо средственно технически чистый титан (ВТ1—О и ВТ1—00) широко применяют, например в химической промышленности, в частности, в теплообменной аппаратуре. Однако разнообразие запросов техники, в начале главным образом из необходимости иметь возможно широкий спектр механических свойств и технологических обработок, а также в целях возможного повышения коррозионной стойкости металлического материала, стимулировали создание многочисленных титановых сплавов с разнообразными физико-химическими и технологическими свойствами [2, 200]. [c.243]

    В ряде случаев необходимая коррозионная стойкость металлической конструкции достигается подбором и применением стойкого в данной коррозионной среде (и при данных условиях коррозии) металла (или сплава). Выбор материала может быть сделан на [c.8]

    Защитные свойства металлических покрытий определяются как коррозионной стойкостью самого материала покрытия, так и качеством покрытия (пористостью, сплошностью, толщиной и др.) Наибольшее применение для защиты стальных конструкций в атмосферных условиях нашли цинковые и кадмиевые покрытия. Результаты многочисленных натурных и ускоренных испытаний позволили Л. А. Шувахиной рекомендовать справочные данные о скорости коррозии (или сроках службы) кадмиевых и цинковых покрытий на стали в различных климатических зонах при наличии в атмосфере оксидов серы и хлор-ионов (табл. 13) [92]. Из приведенньих данных следует, что скорость коррозии цинкового покрытия может изменяться в зависимости от климатического района в сотни раз. [c.93]

    Благодаря высокой температуре плавления (1710°), малому удельному весу (5,96 г см при 20°) по сравнению с железом, хорошей коррозионной стойкости металлический ванадий и его сплавы используются в качестве конструкционных материалов. В меньших масштабах чистый ванадий применяется в качестве материала для ядерных реакторов на быстрых нейтронах. [c.150]

    Электрофоретическое нанесение лакокрасочных материалов, растворимых в воде, представляет собой усовершенствованный способ погружения, недостатки которого устранены действием электростатического поля. Электрофорез основан на ориентированном перемещении коллоидных частиц в диэлектрической среде. При наложении электрического тока возникают два процесса. Первый — это электролиз, характеризующийся перемещением ионов, образовавшихся при диссоциации электролита. Второй — собственно электрофорез, т. е. движение коллоидных частиц под действием электрического поля в среде с высокой диэлектрической постоянной. Частицы в соответствии со своей полярностью движутся к одному из электродов. Отрицательно заряженные частицы движутся к аноду, т. е. к изделию. На аноде или в непосредственной близости от него происходит потеря электрического заряда и коагуляция частиц. Одновременно с электрофорезом происходит и электроосмос, т. е. процесс, при котором под действием разности потенциалов из лакокрасочного материала вытесняется диспергирующий агент, например вода, и слой загустевает. Технологическим достоинством этого способа является возможность обеспечения высокой степени автоматизации, при которой потери лакокрасочного материала не превышают 5%. Достигается равномерная толщина слоя, которую можно регулировать в пределах 8—45 мкм. Слой не имеет пор и видимых дефектов. Коррозионная стойкость его примерно в 2 раза выше, чем у лакокрасочных покрытий, полученных способом погружения. Линия, в которой использована такая технология, -в основном состоит из оборудования для предварительной подготовки поверхности, оборудования для непосредственно электрофоретического нанесения, включая соответствующую промывку, и оборудования для предварительной и окончательной сушки лакокрасочного покрытия при температуре 150—220° С в течение 5—30 мин. Способ нашел применение в автомобильной промышленности, на предприятиях по производству мебели, металлических конструкций для строительства и в других областях. [c.87]

    Выбор защитного материала для консервации металлических изделий определяется его коррозионной стойкостью и условиями хранения. Основным правилом для консервации является предварительная очистка поверхностей от всяких загрязнений и следов коррозии. Защитный материал наносят на сухую поверхность при помощи кисти, распылением, окунанием на 1—2 мин в подогретую смазку или другим способом. [c.229]

    В разд. 4.2 сообщалось о влиянии химической природы материала насадки на разделяющую способность колонны. Насадки для лабораторных колонн в основном изготавливают из стекла, фарфора, глины, различных металлических сплавов и в последнее время также из пластмасс. Предпочтение обычно отдают стеклу и керамическим материалам благодаря их коррозионной стойкости в среде агрессивных жидкостей. Преимущество фарфора заключается в том, что он после обжига становится твердым и не содержит железа, которое может оказывать каталитическое воздействие на разделяемые вещества. Проволочные или сетчатые насадки из нержавеющей стали У2А обеспечивают наибольшую эффективность разделения. [c.415]


    В результате нанесения металлического покрытия на основной материал (металл, пластмассу и др.) образуется материал, который обладает хорошими механическими свойствами, высокой коррозионной стойкостью и другими положительными качествами, приобретенными от основного материала и покрытия. [c.7]

    Прм Коррозионностойкий материал для приборов, фильер и т. п. материал ддя нагревательных спиралей электронных трубок (эмиссионная способность и устойчивость к перегрузкам) компонент сплавов (высокие механические показатели и коррозионная стойкость) для ликвидации следов N2 и О2 при металлическом литье в пиротехнике (сигнальные ракеты, трассирующие снаряды), [c.159]

    В подавляющем большинстве случаев довольствуются стойкими в данной среде материалами, проницаемость которых не превышает 0.1 мм/год. В особо ответственных случаях, когда по условиям технологического процесса производства того или иного химического продукта требуется материал наивысшей коррозионной стойкости, аппаратуру изготовляют из металлических или неметаллических конструкционных материалов, проницаемость которых не превышает 0,01—0,001 мм/год или почти равна нулю. [c.100]

    Низкие предел прочности и модуль упругости, а также недостаточно высокая коррозионная стойкость не позволяют применять металлический торий как конструкционный материал. Однако металлический торий используется как электродный материал для газоразрядных и других типов ламп [392]. [c.651]

    В качестве мягкого металлического прокладочного материала, допускающего непосредственный контакт, рекомендуется использовать красную электролитическую медь, чистый алюминий и свинец. Коррозионная стойкость всех указанных конструкционных материалов при работе с трифторидом хлора обеспечивается только при условии образования защитной пленки. Для ес образования необходима пассивация деталей, а перед пассивацией поверхность материалов должна быть очень тщательно обезжирена и очищена от всяких посторонних покрытий. Очищенные и обезжиренные детали нельзя брать руками, и даже использование специальных защитных перчаток не всегда приносит положительный результат, если контакт с деталью был достаточно долгим. Особенно тщательно с деталей должны удаляться остатки технологической грязи, окалина, краски и покрытия консистентной смазкой. [c.80]

    Коррозия металлических сооружений причиняет огромный ущерб всем отраслям (народного хозяйства. Особенно велики потери в результате коррозии нефте-и газопромыслового оборудова ия, что связано с наличием высокоагрессивных комшонентов в рабочих средах и другими особенностями работы оборудования. Долговечность и (надежность работы его во многом зависят от технико-экономической характеристики конструкцион ного материала для нефтегазодобывающего оборудования, к которому предъявляют чрезвычайно высо кие требования он должен обладать сочетанием прочностных и пластических свойств, сохраняющихся в широком интервале температур, высокой коррозионной стойкостью, стойкостью против водородного охрупчивания, коррози-о нного растрескивания и др. Многие нефтяные и газовые месторождения расположены в отдаленных и труднодоступных районах, что усложняет транспортирование оборудования, увеличение глубин скважин и большие габариты оборудоваиия требуют подъемных механизмов большой мощности, поэтому желательно использование конструкционных материалов, позволяющих снизить массу конструкций. Конструкционные материалы должны быть технологичны и едефицитны. [c.3]

    Свойства самый дешевый металлический материал, обладает хорошими литейными и антифрикщюнными свойствами, износостойкостью, способностью гасить вибрации. Различают передельный, литейный и легированный чугун. Легированный чугун отличается жаростойкостью и коррозионной стойкостью. [c.181]

    Чистый титан имеет две модификации. До температуры 882,5°С он существует в виде а-титана с гексагональной решеткой, а выше температуры полиморфного превращенип — в виде 0-титана с объемно-центрированной кубической решеткой. Как конструкционньгй материал титан в чистом виде, ввиду низкой прочности, почти не применяется. Титан обычно легируют различными а-стабилиэирующими (А1, Ga, La, Се. N, С, О) и -стабилизирующими (Н, Nb, V, Мо, Сг, Fe, Со, Ni, Hf, Zr и др.) элементами, существенно изменяющими его структуру и свойства [ 135]. Высокая коррозионная стойкость титановых сплавов обеспечивается благодаря образованию на поверхности плотных химически мало активных оксидных пленок. Титановые сплавы стойки к сплошной и точечной коррозии в сероводородсодержащих средах, морской воде, углекислом и сернокислом газах и других средах. С помощью подбора легирующих элементов и режимов термической обработки сплавов удается достичь = 1500 МПа и более, что обеспечивает титановым сплавам наивысшую удельную прочность среди конструкционных металлических материалов. [c.70]

    Все существуюгцие в настоящее время методы испытаний могут быть подразделены на полевые, натурные и лабораторные. Первые два типа испытаний проводят в естественных условиях, они требуют длительного времени (месяг ы) и различаются тем, что в первом случае о коррозионной стойкости материала судят по поведению образцов-свидетелей, устанавливаемых в интересующие узлы эксплуатирующегося оборудования, а во втором — испытаниям подвергают опытные образцы аппаратов (или конструкций). Результаты обоих указанных типов испытаний не обладают высокой надежностью. В случае полевых испытаний это связано с тем, что воздействие агрессивной среды на образцы-свидетели и элементы металлической конструкции не всегда полностью совпадает. Например, при проведении коррозионных испытаний образцов-свидетелей в потоке движущейся жидкости условия ее течения вблизи их поверхности могут существенно отличаться от реализуемых на поверхности элементов оборудования (может возникать локальная турбулизация потока, застойные зоны, кавитационные эффекты и др.). [c.142]

    В настоящее время из стекла изготавливают реакционные аппараты емкостью до 200 л, царги колонн диаметром до 1000 мм, центробежные насосы, вентили и другую вспомогательную аппаратуру. Оборудование пз стекла обладает хорошей стойкостью к воздействию таких коррозионпоактивных сред, как металлический бром, иод. Кроме того, его с успехом используют в тех случаях, когда требуется особая чистота, например при изготовлении фармацевтических препаратов и пищевых продуктов. Дешевизна этого материала и практически абсолютная коррозионная стойкость позволяют применять его для изготовленя трубопроводов большой протяженности. Из стекла изготавливают также кожухотрубчатые теилообмеиникн. [c.28]

    Для повышения коррозионной стойкости оборудование изготовляют из легированных сталей, цветных металлов и их сплавов, широко применяют неметаллические антикоррозионные покрытия органического и неорганического происхождения. Кляг-сификация неметаллических защитных материалов приведена в специальной литературе. Материалы неорганического происхождения в основном используют как футеровочные, ими покрывают металлическую поверхность, на которую наносят обычно органический материал. В качестве скрепляющих применяют коррозионностойкие вяжущие материалы. [c.40]

    Материалы эффузионной камеры и мембраны не должны реагировать с исследуемым веществом. Для органических соединений этим требованиям обычно удовлетцоряют металлические камеры. В случае же таких веществ, как элементоорганические соединения или соли, необходимо исследовать коррозионную стойкость материалов камеры и мембраны, а также устойчивость исследуемых веществ к действию материала эффузионной камеры. Для ]реакционноспособных1 веществ более надежны камеры и мембраны из стекла или плавленого кварца. [c.69]

    АЗОТИРОВАНИЕ, нитрирование— насыщение поверхностного слоя металлических изделий азотом. Азотированные слои отличаются повышенными твердостью, износостойкостью, пределом усталости (см. Усталость материалов) и коррозионной стойкостью в различных средах (остальная толща изделий сохраняет свойства исходного материала). А. подвергают термически (см. Закалка, Отпуск в термообработке) и механически (включая шлифование) обработанные новерхности изделий из сплавов железа углеродистых сталей, легированных конструкционных сталей, инструментальных сталей, нержавеющих сталей, жаропрочных сталей, высокопрочных магниевых чугунов, а также из некоторых цветных тугоплавких металлов. Перед А. обработанную поверхность тщательно очищают и обезжиривают. А. поверхностей изделий из с п л а -вов железа проводят, используя герметически закрытые муфельные печи, гл. обр. в среде газообразного аммиака (КНз) при т-ре 500— 700° С (прочностное А.). В этом интервале т-р происходит диссоциация (распад) аммиака по реакции КНз -> ЗН N. Выделяющийся атомарный азот адсорбируется (см. А дсорб-ция) поверхностью металла и диффундирует (см. Диффузия) в кристаллическую решетку металла, образуя различные азотистые фазы. В системе железо — азот при т-ре ниже 591° С последовательно возникают такие фазы а — твердый раствор азота в альфа-желеае (азотистый феррит, содержащий при нормальной т-ре около 0,01% N. См. также Альфа-фаза) у — нитрид (5,7—6.1% N) с узкой областью [c.30]

    КОРРОЗИОННОСТОЙКИЕ МАТЕРИА л Ы — материалы, отличающиеся повышенной коррозионной стойкостью. Различают К. ы. конструкционные (металлические, неметаллические, композиционные), используемые для изготовления конструкций, и защитные, предохраняющие металлические сооружения от коррозии. Материалы, обладающие повышенной хим. стойкостью к активным газовым средам при повышенных т-рах, обычно выделяют в разряд жаростойких материалов (см. также Коррозия металлов. Коррозия бетона, Защитные покрытия). К м е т а л л и ч е с к и м К. м. относятся стали, чугуны, сплавы на основе никеля, меди (бронзы, латуни), алюминия, титана, циркония, тантала, ниобия и др. Их стойкость против электрохимической коррозии в принципе можно повышать увеличением термодинамической стабильности или торможением катодного и анодного нроцессов. На практике повышения коррозионной стойкости технических сплавов обычно добиваются легированием, тормозящим анодный процесс, т. е. улучшающим пассивационные характеристики (см. Пассивирование), обусловливая возможность самопассивиро-вания сплава в условиях эксплуатации. Наиболее легко пассивируются хром и титан. Повышенная способность хрома к пассивации нри его введении в менее пассивирующиеся металлы, напр, железо, может передаваться сплаву. На этом принципе основано получение нержавеющих сталей. Чем больше введено хрома, тем выше коррозионная стойкость [c.625]

    TiN -f- 2012). Многие металлоподобные H. служат в композиционных материалах упрочнителями пластичной металлической матрицы (основы материала), не снижающими слишком сильно ее пластичность, поскольку сами отличаются некоторой пластичностью. Азотированием поверхностного слоя металлических изделий получают нитридные покрытия, обладающие высокой твердостью, износостойкостью, коррозионной стойкостью, что используется в машиностроении для поверхностного упрочнения деталей машин и механизмов. Лит. Юргенсон А. А. Азотирование в энергомашиностроении. М., 1962 Самсонов Г. В. Нитриды. К., 1969 Самсонов Г. В. Неметаллические нитриды. М., 1969 К и п а р и с о в С. С., Ленинский Ю. В. Азотирование тугоплавких металлов. М., 1972 Елютин В. П. [и др.]. Высокотемпературные материалы, ч. 1—2. М., 1972—73 Самсонов Г. В., Эпик А. П. Тугоплавкие покрытия. М., 1973 Гольдшмидт X. Дж. Сплавы внедрения, в. [c.83]

    Выбор материала для изготовления деталей, работающих в условиях гидроэрозии, долгое время основывали на коррозионной стойкости материалов. Поэтому наиболее часто применяли корро-зионно-стойкне (нержавеющие) сплавы без учета их сопротивляемости микроударному разрушению. Применение высоких скоростей изменило требование к таким деталям изменился и принцип выбора конструкционных материалов. В этих условиях необходимо, чтобы материал обладал кроме высокой коррозионной стойкости еще и высоким сопротивлением микроударному разрушению. Это новое требование заставило расширить и углубить понятие о прочности металлов и сплавов. В условиях гидроэрозии сопротивляемость микроударному разрушению определяется не усредненными механическими характеристиками, а прочностью отдельных микроучастков поверхности. При этом решающее значение имеет прочность отдельных структурных составляющих, металлического зерна и его границ. [c.230]

    Очевидно под понятием коррозионностойкие сплавы надо в общем понимать конструкционные металлические сплавы, которые в наиболее употребительных в технике средах повышенной коррозионной агрессивности, имеют достаточную стойкость и могут быть использованы без специальных средств противокоррозионной защиты. Так как наиболее характерными агрессивными средами в большинстве практических случаев являются среды кислого характера при повышенных температурах, то понятие коррозионностойкие сплавы часто отождествляется с понятием кислотостойкие сплавы. Однако, при этом необходимо принимать во внимание не только кислотность раствора, например, определяемую величиной pH, но и специфичность действия различных анионов, которые могут либо сильно ускорять коррозиоиный процесс (как например, С1 , Р",, Вг ), либо в некоторых условиях, сильно его тормозить (N0 , N02 , РО "). Необходимо также учитывать характер разрушения питтпнг, щелевая коррозия, или межкри-сталлитное коррозионное растрескивание могут вывести конструкцию из строя при относительно малых общих потерях. Таким образом, следует рассматривать стойкость конструкционного материала в смысле сохранения не только основной массы сплава, но и выполнения прямых функций самой металлической конструкции. [c.122]

    Таким образом, титан, легированный катодными добавками, а также некоторые сплавы титана, модифицированные Рё или Р1, обладают довольно редким и ценным свойством как конструкционный металлический материал для химической промышленности, а именно, одно1временной коррозионной стойкости как в окислительных, так и в неокислительных кислых средах. Установлена также повышенная стойкость титана и некоторых егО сплавов, модифицированных палладием, по сравнению с теми же сплавами без палладия в условиях щелевой, питтинговой коррозии и растрескивающей коррозии [76, 77]. [c.51]

    Основные особенности коррозии индивидуальных металлов в данном расплаве проявляются в свойствах их сплавов. Так, если металл пассивируется в солевом расплаве, то и его сплав, как правило, сохраняет способность к пассивации в этой среде. Накоплен обширный экспериментальный материал по коррозионной стойкости индивидуальных металлов во всех видах солевых расйла-вов. Основываясь на этих данных, были выбраны и испытаны на коррозионную стойкость сложные металлические материалы — сплавы и стали, выпускаемые промышленностью. [c.381]


Смотреть страницы где упоминается термин Коррозионная стойкость металлических материалов в газ: [c.105]    [c.38]    [c.49]    [c.13]    [c.326]    [c.129]    [c.129]    [c.129]    [c.407]    [c.808]    [c.6]    [c.234]    [c.549]    [c.676]    [c.177]    [c.5]    [c.41]   
Справочник азотчика (1987) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозионная стойкость

Коррозионная стойкость металлических конструкционных материалов

Коррозионная стойкость металлических материалов в водороде

Коррозионная стойкость металлических материалов в водяном паре

Коррозионная стойкость различных металлических материалов в теплоносителе на основе

Лабораторные исследования коррозионной стойкости металлических материалов

Материалы стойкости



© 2024 chem21.info Реклама на сайте