Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смола оли в растворах, воздействие

    Нанесение покрытий методом электростатического напыления эффективно и экономично. Этим способом можно напылять как растворы, так и сухие холодные порошки. Последние притягиваются к изделию под воздействием электростатических сил, а затем при последующем нагреве расплавляются, образуя покрытие. Это удобный и дешевый способ нанесения равномерных покрытий на изделия любой формы и размера. Для напыления применяются эпоксидные смолы, поливинилхло-риды, полиэтилен, хлорированный нейлон, эфир, ацетобутират целлюлозы. [c.107]


    Для определения скорости изменения качества, в частности скорости образования смол и осадков, необходимо знать механизм термодинамических или физико-химических процессов, вызывающих смолообразование, либо использовать экспериментальные данные. Рассмотрим это подробнее. Образование смол и осадков является следствием процессов окисления. Вначале, до воздействия кислорода и других возмущающих факторов, нефтепродукты в идеальном случае можно рассматривать как истинный раствор гетероорганических соединений в углеводородной среде. Вследствие термодинамической неустойчивости наименее стабильные компоненты нефтепродуктов начинают окисляться с образованием кислородсодержащих веществ. [c.79]

    Из лакокрасочных материалов на основе резоль-ных фенолоформальдегидных смол широкое распространение имеет бакелитовый лак марки ЛБС-1. Его применяют для защиты теплообменной и другой аппаратуры от воздействия технической горячей воды, растворов кислот (слабой и средней концентрации) и солей, а также для окраски нефте- и бензобаков. После нанесения на поверхность пленку лака подвергают бакелизации, т. е. термической обработке по специальному режиму с постепенным повышением температуры до 160 °С, в результате чего образуется полимер сетчатой структуры [c.73]

    Иониты должны быть достаточно стабильны к длительному воздействию растворов серной и соляной кислот, щелочей, а также органических кислот и углеводов, содержащихся в пентозном гидролизате. Иониты должны быть практически нерастворимы в гидролизатах, кислотах и щелочах. Снижение стабильности ионитов может привести к резкому снижению их обменной емкости в процессе эксплуатации. Большое значение имеет механическая прочность ионитов или малая истираемость зерен смолы в процессе ее длительной эксплуатации при очистке растворов. Химическая стойкость и механическая прочность зависят от стойкости высокомо- [c.149]

    Свободный родан применяется для определения роданового числа жиров н масел [37, 66], смол [67] и углеводородов [37, 68, 69] но для обычных синтезов более подходящим способом является образование родана в растворе подлежащего роданированию вещества со скоростью, равной скорости исчезновения его в процессе реакции. Таким образом поддерживается низкая концентрация реагента, благодаря чему полимеризация сводится к минимуму. Родан образуется из роданистых солей путем электролиза или путем химического воздействия. [c.240]


    Нейтральные смолы — полужидкие, а иногда почти твердые, вещества темно-красного цвета, плотностью около единицы. Они растворяются в петролейном эфире, бензоле, хлороформе и четыреххлористом углероде. В отличие от асфальтенов нейтральные смолы образуют истинные растворы. Кроме углерода и водорода в состав смол входят сера, кислород и иногда азот. Углеводороды находятся в смолах в виде ароматических и нафтеновых циклов со значительным количеством (40—50 вес. %) боковых парафиновых цепей. Весовое соотношение углерод водород составляет примерно 8 1. Сера и кислород входят в состав гетероциклических соединений. Смолы химически не стабильны. Под воздействием адсорбентов в присутствии кислорода частично происходит окислительная конденсация их в асфальтены. Физические свойства смол зависят от того, из каких фракций нефти они выделены. Смолы из более тяжелых фракций имеют большие плотность, молекулярный вес, красящую способность и содержат больше серы, кислорода и азота. Достаточно добавить в бензин 0,005 вес. % тяжелой смолы, чтобы придать ему соломенно-желтую окраску. [c.32]

    Для определения активного хлора эпоксидная смола подвергается воздействию спиртового раствора едкого кали при нагревании. Затем ионы хлора титруют потенциометрическим методом нитрата серебра. [c.173]

    Растворяют в спиртобензольной смеси (1 1) равные весовые количества резольной смолы и окисленного льняного масла. Раствор нагревают до 80—100° в течение 15—30 минут. Растворители затем отгоняют под вакуумом при температуре не выше 100°. Полученная модифицированная смола растворяется в древесном спирте и скипидаре. Лаковые пленки полученной смолы на металле быстро сохнут, обладают эластичностью и стойки против воздействия органических растворителей. В качестве исходной резольной смолы применяют обезвоженные продукты конденсации фенола с альдегидом в присутствии аммиака. Свинцовый глет благоприятствует связыванию масла со смолой. [c.47]

    Эпоксидные смолы после отверждения весьма устойчивы к коррозионному действию многих химических реагентов. Опи противостоят воздействию соляной кислоты, разбавленной серной кислоты, растворов щелочей, воды и растворов неорганических солей вплоть до температуры 90° С. Из органических веществ спирты, хлорированные углеводороды, ароматические и алифатические углеводороды, а также фруктовые соки ие оказывают влияния на эти смолы. При действии серной кислоты концентрации более 50%, азотной кислоты концентрации более [c.407]

    Смолы хорошо растворяются во всех нефтяных маслах, бензине, бензоле, хлороформе. При повышении температуры, а также при воздействии некоторых других факторов (свет, действие кислот) они переходят частично в асфальтены. [c.215]

    Эмали ЭП-773 зеленая и кремовая на основе смолы Э-41. Применяются для защиты металлических поверхностей от воздействия повышенной влажности, а также воды, горячих растворов щелочей отвердитель —№ 1 (3,5 ч. на 100 ч. эмали). [c.75]

    Ф Л-777 — на основе бакелитового лака ЛБС-1, пигментной пасты на основе эпоксидной смолы Э-40 и алюминиевой пудры ПАП-2. Применяется для защиты внутренней поверхности емкостей от воздействия различных агрессивных сред горячей воды, солевых растворов, углеводородного конденсата, нефтепродуктов [29]. [c.78]

    Широкое распространение получила диабазовая замазка. Ее готовят на жидком стекле, к которому в качестве наполнителя добавляют молотый диабаз и в качестве ускорителя твердения— кремнефтористый натрий. Диабазовая замазка является кислотостойкой. но не выдерживает воздействия щелочей. Большой интерес представляют замазки типа арзамит. Их готовят смешением раствора феноло-формальдегидной смолы в бензиловом спирте с тонкоразмолотыми минеральными наполнителями и паратолуол-сульфохлоридом, ускоряющим твердение замазки при комнатной температуре. Замазка арзамит-1 (наполнители—кварцевая мука и кремнезем) обладает кислотостойкостью. Замазка арзамит-2, устойчивая к действию кислот и щелочей, готовится с добавлением глицериндихлоргидрина наполнителями служат кварцевая мука [c.94]

    При возникновении некоторых осложнений глинистые коллоиды иногда дополняют и даже полностью заменяют органическими коллоидами. Например, если глины флокулируют под действием растворимых солей, в результате чего становится невозможным регулирование реологических и фильтрационных свойств раствора, в соленую воду или загрязненный солями буровой раствор добавляют солестойкие коллоиды (такие, как предварительно желатинизированный крахмал или целлюлозные полимеры). Целлюлозные и полиакриловые полимеры, а также полимеры из природных смол применяются в растворах с низким содержанием твердой фазы, чтобы облегчить поддержание устойчивости ствола скважины и свести к минимуму диспергирование выбуренной породы буровым раствором. Полимеры состоят из длинных цепочек повторяющихся групп, которые адсорбируются на поверхностях частиц шлама, защищая их от. разрушения. Эти полимеры обладают вязкостными свойствами главным образом благодаря механическому взаимодействию между цепями, при котором не происходит структурообразования (за исключением полимеров, между цепочками которых образуются поперечные связи в результате химического воздействия). [c.19]


    Действие серной кислоты на смолистые вещества, по данным А. Н. Саханова и Н. А. Васильева [51], проявляется в трех направлениях. Часть смол растворяется в серной кислоте без видимых изменений. Другая часть подвергается полимеризации с образованием асфальтенов. Третья часть смол при воздействии на них серной кислоты образует сульфокислоты. Все это увязывается со сложным составом смолистых веществ, описанным выше. Азотистые основания, по исследованиям К. П. Лихушина [52], при действии на них серной кислоты переходят в кислый гудрон. Нафтеновые кислоты растворяются в серной кислоте и частично сульфируются [53]. Серная кислота является эффективным обессеривающим агентом. Сернистые соединения в дистиллятах масел относятся к ароматическим сульфидам и гетероциклическим соединениям, содержащим серу в кольце. Реакционная способность этих веществ с серной кислотой, по-видимому, крайне незначительна в условиях обычной очистки масел. [c.231]

    Действие серной кислоты на смолы лроявляется в трех направлениях. Часть смол растворяется в серной кислоте без видимых изменений другая часть конденсируется с образованием асфальтенов третья — при воздействии на них серной кислоты образует сульфокислоты. Асфальтены претерпевают уплотнение, ведущее к образованию веществ типа карбенов. [c.136]

    Значительную роль в процессе выделения фенолов из смолы или ее фракций играет не только физическое растворение каких-либо компонентов в фенолятах или смоле, но и химическое воздействие щелочи на кислые и нейтральные соединения смолы. Как мы установили, растворы кислых веществ в щелочи оказываются чрезвычайно активными к различным превращениям.. Так, эти растворы легко поглощают кислород, превращаясь частью в смолы. Растворы щелочи сами по себе оказываются сильно действующим средством для полимеризации нейтральных кислородных соединений, вызывающим образование трудно растворимых смол. Кроме того, растворы щелочи, в зависимости от концентрации и времени обработки смолы, вызывают омыление эфирообразных веществ смолы, что, в свою очередь, ведет к совершенно искаженным результатам, поскольку нет возможности обеспечить, во всех случаях, абсолютно тождественные условия обработки растворами щелочи. [c.18]

    Разработка преветивных методов предотвращения формирования органических отложений развивается в следующих двух направлениях путем воздействия на структуру нефти как дисперсной системы и модификацией поверхности подложки, на которой формируется отложение. Наиболее радикальным способом изменения дисперсной структуры нефти является превращение ее в молекулярный раствор. В таком случае образование отложений на поверхности оборудования будет определяться лишь адсорбцией асфальтенов и смол и толщина таких отложений, как видно из табл. 3.2,не будет превышать долей микрона. [c.134]

    Жизнe пoj oбнo ть смолы, мин, в зависимости от pH клея и концентрации смолы при воздействии щавелевой кислоты в количестве 28% (в виде 10%-ного раствора) [c.56]

    Смолистые вещества (нейтральные смолы) масляных дестиллатов различны по происхождению некоторые из них образовались в результате окислительной полимеризации кислородных и сернистых соединений нефти, другие же являются продуктами конденсации ароматических и нафтено-ароматических углеводородов. Ввиду этого часть смол растворяется в серной кислоте без изменений, другая часть под действием H2SO4 подвергается конденсации с образованием асфальтенов, реагирующих в дальнейшем с серной кислотой третья часть смол при воздействии на них H2SO4 на холоду образует сульфокислоты [103]. [c.260]

    В водных растворах неорганических солей фенопласты более устойчивы, чем в чистой воде. Фенопласты с органическими наполнителями достаточно устойчивы к воздействию неорганических кислот, не обладающих окислительными свойствами. Они разрушаются иод влиянием щелочей. На рис. 60 и 61 показаны изменения прочности при растяжении ге-тинакса па основе фено-ло-формальдегидной смолы после воздействия некоторых химических [c.148]

    Стабилизатор должен хорошо связывать выделяющийся хлористый водород и этим исключить или ослабить его каталитическое воздействие на полимер. Часто применение смеси стабилизаторов оказывает более сильное воздействие, чем каждый из них в отдельности. В отличие от других стабилизаторов стеараты играют роль смазочных веществ и сообщают виниловым композициям некоторую пластичность. Степень эффективности термо-стабилизатора определяется числом градусов, на которое повышается темиература разложемия композиции, или числом минут, на которые увеличивается термостабильность смеси ПВХ смолы с термостабилизатором. Об эффективности светостабилизатора судят по повышению числа часов облучения светом (ГОСТ 10226—62) смеси ПВХ смолы со стабилизатором без ее разрушения (распада). Поливинилхлоридная смола имеет значительную полидиспероность. О величине среднего молекулярного веса ее судят по вязкости раствора смолы в определенном растворителе. Смола, применяемая для производства кабельных оболочек, проверяется на электропроводность водной вытяжки—воды, в которой произ водилось кипячение навески смолы в течение определенного времени. Этот показатель позволяет судить о степени отмывки полимера от эмульгатора. Поливинилхлорид обладает значительной прочностью, теплостойкостью и малой растворимостью в органических растворителях. Чем выше степень полимеризации смолы, тем выше ее прочность, теплостойкость и меньше растворимость. Ниэкомолекулярные фракции смолы растворяются в ацетоне. Высокомолекулярные фракции незначительно растворяются только в полярных растворителях (дихлорэтане, хлорбензоле, тетрагидрофуране и диоксане при температуре их кипения). [c.279]

    Приведенные в табл. 78 данные иллюстрируют различное поведение смол при воздействии на них влаги в зависимости от их химического строения. Эпоксидная смола хотя и поглощает довольно большое количество влаги, но обладает химическими связями,, усто]"1тпвьши к гидролизу, и прочность образцов смолы сравнительно мало изменяется даже после длительного кипячения в воде. Высокую водостойкость обнаруживает углеводородная смола, это обусловливается отсутств1[ем полярных групп в ее структуре. Полиэфирная смола после кратковременного кипячения (24 часа) набухает довольно значительно длительное кипячение в воде (7 дней) приводит не к увеличению, а к потере в весе образцов вследствие того, что химические связи в полиэфирной смоле неустойчивы и подвергаются гидролизу, а продукты гидролиза растворяются в воде. Механическая прочность образцов полиэфирной смолы резко понижается в результате воздействия кипящей воды. Представленные в табл. 78 данные отчетливо показывают влияние химической структуры смолы на ее водостойкость, а также позволяют объяснить поведение стеклопластиков, полученных на [c.307]

    А-, К ли резольное, состояние, когда смола растворяется в спирте И плавится при нагреве. При воздействии теплоты происходит дальнейшая конденсация и смола переходит в В-, или резитольное, состояние, когда смола еще плавится, но не растворяется в спирте. При дальнейшем нагреве смола переходит в последнее состояние, а именно в С- или резитное, конечное, состояние, когда она не плавится ц не растворяется в спирте. [c.27]

    Первые работы, посвященные изучению химической природы смолисто-асфальтеновых веществ, относятся к началу нашего столетия. В основном эти нсследования проводили при помощи химических методов. Еще Маркуссон в 1915 г. подвергал воздействию крепкой азютной кислоты смолы и асфальтены в растворе хлороформа при температуре 10 °С. При этом были получены нитросоединения, содержащие б—6% азота. С формальдегидом в присутствии серной кислоты смолы и асфальтены образовывали форма-литы. Эти реакции показали, что в смолах и асфальтенах присутствуют ароматические кольца. Марганцовокислым калием (в пиридиновом растворе) смолы и асфальтены окисляются до кислот, практически не омыляются, имеют низкое ацетильное число, не реагируют с пятисернистым фосфором. На основании этих данных Маркуссон сделал вывод, что смолы и асфальтены не содержат гидроксильных, карбонильных, карбоксильных и эфирных [c.27]

    Кристаллизация твердых углеводородов при депарафинизации зависит от глубины очистки рафинатов, которая характеризуется степенью извлечения смол и полициклических ароматических углеводородов. Смолы остаточного происхождения в большей степени влияют на кристаллообразование твердых углеводородов, чем дистиллятные, содержащиеся в той же концентрации, причем не наблюдается отличия в воздействии аналогичных по происхождению гр)рп смол, содержащихся в рафинатах из серщ1стых и мало-сернисхых нефтей. Смолы при малой концентрации в растворе тормозят, образование зародышей кристаллов, твердых углеводородов и практически не влияют на рост уже образовавшихся кристаллов правильной орторомбической структуры. В. результате из-за снижения чиела зародышей кристаллов в конейрм итоге получаются более крупные кристаллы, чем в отсутствие емол. [c.138]

    Роль пластмассовых покрытий в современной технике трудно переоценить. Превосходная химическая стойкость, водостойкость, погодоустойчивость, стойкость к изменению температуры и другие свойства полимерных материалов позволяют использовать их для защиты от коррозии и агрессивного воздействия химических сред самого разнообразного химического оборудования, трубопроводов, строительных конструкций. Пластмассовые покрытия позволяют повысить срок службы обычных конструкционных материалов, а это означает, что в ряде случаев нет необходимости применять дорогостоящие нержавеющие стали и сплавы. Хорошие декоративные свойства пластмасс в сочетании с такими свойствами, как устойчивость к воздействию микроорганизмов, низкая газопроницаемость, отсутствие токсичности и т. д. дают возможность использовать пластмассы для создания различных слоистых материалов, успешно применяемых для декоративного оформления и упаковки. Покрытия на различные изделия и рулонные материалы могут быть нанесены разными способами в зависимости от физических свойств полимерного материала, а также от вида покрываемого изделия. Для создания покрытий полимерные материалы могут использоваться в виде расплавов, растворов, порошков, пленок. Одним из наиболее интересных является метод нанесения порошкообразного полимера в псевдоожижениом слое. Покрытия на основе высокомолекулярных эпоксидных смол на металлических деталях самого сложного профиля могут быть получены окунанием предварительно нагретой детали в ванну, в которой находится псевдоожиженная порошкообразная смола и отвердитель. Для нанесения покрытий на наружные и внутренние поверхности крупногабаритных конструкций разработаны различные конструкции многокомпонентных распылителей, с помощью которых можно наносить на поверхность как жидкие композиции, так порошковые и волокнистые наполнители. Несколько лет назад появились сообщения о вакуумном методе нанесения пленочных покрытий. Покрытия в этом случае образуются путем приклеивания под вакуумом полимерной пленки к поверхности изделия [235]. [c.195]

    В данной работе для получения волокнистых композиций использован метод гидросмешения углеродных волокон с порошкообразной термореактивной смолой, обеспечивающий получение однородной шихты и позволяющий избежать применения органических растворителей и механического измельчения. Компоненты смешивали в нутч-фильтре [6, с. 253—261] с высокоскоростной пропеллерной мешалкой (рис. 1), где под динамическим воздействием жидкой среды волокна разделялись на филаменты и измельчались до нужного размера. При этом степень измельчения волокон регулировали изменениями скорости вращения и конструкции мешалки. Диспергирование волокон проводили в водном растворе ионного катализатора и поверхностно активного вещества [c.206]

    Поливинилбутираль применяется для изготовления безоско-лочных стекол (триплекс) в качестве промежуточного склеивающего слоя. В электроизоляционной и кабельной технике нашел применение поливинилбутираль с добавкой резольной фенолформальдегидной смолы, выпускаемый в спиртовом растворе под названием клея БФ. Этот клей применяют для подклейки волокнистой оплетки (из натурального шелка) монтажных проводов, а также для пропитки и покрытия оплетки из стеклянного-волокна. Преимущество клея БФ при применении для указанных целей — возможность достижения необходимой степени склеивания без температурной обработки. Благодаря этому можно процесс подклейки обмотанной жилы совместить с оплеткой, используя способность растворителя (спирта) удаляться на воздухе в нормальных условиях (воздушной сушкой). Склеивают металлы, изоляционные материалы (пластические массы, фарфор и др.), производя давление на склеиваемые поверхности и воздействуя высокой температурой (150° С). При этом достигается значительная прочность шва. [c.172]

    Термореактивные метакриловые смолы могут быть использованы в качестве связующих составов в производстве слоистых пластиков. Связывание отдельных слоев ткани, пропитанных раствором низкополимерных метакриловых смол (в каком-либо органическом растворителе), происходит при воздействии повышенной температуры и инициатора полимеризации — перекиси бензоила. Преимущество термореактивных метакриловых смол перед конденсационными, широко применяемыми для этой цели, — отсутствие выделения продуктов реакции. Благодаря этому слоистые пластики могут быть получены при незначительном давлении или вовсе без давления. [c.176]

    Пластифицирующее воздействие. Поверхностно-активные вещества, растворяясь в углеводородах битума, понижают вязкость дисперсионной среды и уменьшают количество структурообразуюш.их элементов битума — асфальтенов в единице объема. Пластифицирующее воздействие на битумы всех типов оказывают добавки класса высокомолекулярных карбоновых кислот и смол твердых топлив. Оно проявляется в понижении значения всех реологических и прочностных характеристик битума в широком диапазоне температур. [c.221]

    При нанесении покрытий их следует защищать от воздействия влаги (дождя или снега), солнечных лучей, сквозняка, низких температур, поэтому торкретирование ведется в закрытых помещениях при температуре окружающего воздуха не ниже 5°С. Первый слой покрытия наносят толщиной 12 — 15 мм, второй — не менее 15 и не более 20 мм. Концы труб (рис. II) оставляют незащищенными, что вспоследствии облегчает их стыковку. После нанесения торкрета трубы выдерживают во влажных условиях в течение 7 суток до легкого высыхания, затем на пове(рхность наносят гидроизоляционное двухслойное покрытие из полиэфирной смолы ПНА-1И, отверждаемой перекисью бензоила. Последняя вводится в количестве 4 /о от массы смолы в виде пасты. Общая толщина гидроизоляционного покрытия составляет 0,5 0,6 мм (рис. II). Стыки изолируют на трассе вручную цементно-песчаным раствором, который наносят по металлической сетке, натянутой на приваренные к поверхности трубы металлические штыри. Целесооб разно использовать для этого расширяющийся цемент. [c.51]

    Эмаль ЭП-711 темно-зеленая на основе лака ЭП-710 (раствор эпоксидной смолы с тиоколом). Применяется для защиты изделий из стали и алюминия стойка к воздействию растворителей отвердитель — продукт 102Т (25 ч, на 100 ч. полуфабриката)  [c.80]

    Значительное применение в условиях химических и других производств имеет красно-коричневая эмаль ВЛ-515, представляющая собой раствор поливинилбутираля и крезолформальде-гидной смолы в смеси органических растворителей с добавкой пигментов и наполнителей. Покрытия на основе эмали ВЛ-515 могут служить для защиты внутренней поверхности емкостей, подвергающихся постоянному воздействию горячей воды, горячего минерального масла, бензина и дизельного топлива. [c.85]

    Из фуриловых лакокрасочных материалов наибольшее применение для защиты металла от воздействия агрессивных сред получил лак Ф-10, который представляет собой раствор в ацетоне фурилфенолоформальдегидной смолы, модифицированной поливинилацеталями. Лак Ф-10 можно использовать для получения бензостойких покрытий, которые отверждаются при повышенной температуре без отвердителя. Следует учитывать, что лак содержит наибольшее количество сухого остатка (25— 40%), что дает возможность получать тонкие покрытия. Для создания необходимой защиты число наносимых слоев должно быть больше, чем при использовании других лакокрасочных материалов. [c.85]

    В течение последних лет мастики на ошове фурановых смол прошли опытно-проншленные Испытания на ряде преддриятий химической и других отраслей промышленности. Они подвергаются достоянному воздействию различных агрессивных сред растворов щелочей, кислот (в том числе плавиковой), солей д ш температуре до 100°С и находятся в хорошем состоянии. [c.69]

    Повышение химической стойкости древесины и расширение области применения деревянных конструкций могут быть обеспечены нанесением на поверхность конструкций различных лакокрасочных составов или предварительной пропиткой древесины синтетическими смолами и другими веществами. Одним из распространенных способов повышения химической стойкости древесины является пропитка ее феноло-формальдегидными или фураиовыми смолами. Древесина, пропитанная феноло-формальдегидной смолой, устойчива при повышенных температурах (75 125 °С) к действию растворов минеральных (серной, соляной, фосфорной и др.) и органических (уксусной, молочной, щавелевой и др.) кислот, за исключением окисляющих, выдерживает воздействие серного ангидрида, хлора в смеси с хлористым водородом, фтористого водорода и других газов, а также не разрушается при действии аэрозолей (хлористых, фосфорных и др.), солей натрия, калия, магния, кальция и др. Химически стойка таклсе древесина, пропитанная низковязкими мономерами, например ме-тилметакрилатом с последующим радиационным отверждением. [c.93]

    Важным вкладом в совершенствование растворов с низким содержанием твердой фазы было внедрение полимера ХС. Полимер ХС или ксантановая смола образуется в процессе воздействия микроорганизмов ксантомонас кампестрис на сахар, находящийся в подходящей среде. Полимер ХС является эффективным агентом, обеспечивающим высокую несущую способность раствора на пресной или минерализованной воде. При низких скоростях сдвига этот полимер обладает исключительной способностью удерживать во взвешенном состоянии твердую фазу, но его вязкость заметно снижается с увеличением скорости сдвига. Слабая чувствительность к солям сделала полимер ХС подходящим компонентом полимерно-электролитных буровых растворов. [c.69]

    Ксантановую смолу правильнее отнести к природным полимерам, хотя фактически ее получают искусственным, а не естественным путем. Метод получения ксантановой смолы был разработан в 1961 г. в Северном региональном центре Управления по исследованиям в сельском. хозяйстве, г. Пеория, шт. Иллинойс. В опубликованном в 1976 г. обзоре Джинза содержится перечень публикаций, посвященных ксантану и состоящий из 49 наименований. Ксантан представляет собой водорастворимый полисахарид, получаемый в результате воздействия бактерий (относящихся к роду ксантамонас) на углеводы. В качестве компонента буровых растворов его начали применять в середине 60-х годов под названием ХС-полимер . В 70-х годах его использование заметно возросло. [c.470]

    Лак этиноль состоит из 30%-ного раствора дивинилацетилено-вой смолы в ксилоле. Устойчив к воздействию минеральных кислот средней концентрации, щелочам, хлору, брому и другим агрессивным средам при температуре не более 80 °С. [c.356]

    Получаемые в результате отверждения сетчатые полимеры бесцветны, светостойки, устойчивы в орг. р-рителях и маслах, легко окрашиваются, однако имеют ряд недостатков-пониж. водостойкость, хрупкость, низкую устойчивость к деструктивным воздействиям, выделение своб. формальдегида и др. С целью устранения этих недостатков, а также придания требуемых св-в, напр, способности растворяться в орг. р-рителях, увеличения гидрофобности и адгезии, М.-ф. с. модифицируют либо при синтезе путем замены части мочевины на модифицирующий агент, либо уже готовый олигомер (напр., частичной этерификацией метилольных групп). В зависимости от заданных св-в для модификации используют преим. одно- и многоатомные спирты (бутиловый, фурфуриловый, глнколи, глицерин), амины, амиды и др. производные карбоновых к-т, дициандиамид, меламин, гуанамины (см., напр., Гуанамино-формальдегид-ные смолы), а также разл. высокомол. соединения. [c.145]

    Химическая и механическая устойчивости ионообменных смол резко уменьшаются с увеличением температуры [25]. При более высокой температуре (вьпне. 30° С) усиливается частичное выщелачивание смолы, особенно в щелочной среде, изменяется набухаемость, степень пеитизации и механического раздробления [0]. Папример, катиониты КУ-1 и КУ-2 при нагревании подвергаются десульфированию с отп еплением ионов 504 [25]. Аниониты по сраннению с катионитами менее устой-чины к температурным воздействиям [5]. В частности, анионит ЭДЭ-Юп в БО - и СГ- формах после нагревания в воде при 180° С Б течение 24 ч полностью растворяется в 0,1 н. растворе Н2504 [26], а у анионита АВ-27 после 3 суток нагревания вереде метилового спирта при 100 С практически пол[юстыо исчезают все сильноосновные группы. Анионит АВ-17 за это же время теряет 62% сильноосновных групп [27]. Следовательно, ионообменные процессы получения высоко чистых веществ могут осуществляться только при обычных (18—2. )° С) и более низких температурах. [c.190]


Смотреть страницы где упоминается термин Смола оли в растворах, воздействие: [c.203]    [c.319]    [c.297]    [c.255]    [c.248]    [c.29]    [c.65]    [c.35]   
Защита промышленных зданий и сооружений от коррозии в химических производствах (1969) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте