Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

сталь тантал хромистую

    Данные о коррозионной стойкости различных металлов и сплавов, а также неметаллических покрытий в водных растворах формальдегида [34, 35] приведены в Приложении 1. Для сравнения там помещены соответствующие данные для растворов муравьиной кислоты, не содержащих формальдегид, а также сведения о коррозионной агрессивности метанола. Как следует из сопоставления таблиц Приложения I, достаточно стойкими к воздействию растворов формальдегида при нормальной и повышенной температуре являются такие металлы, как чистое железо и алюминий, медь, никель, свинец, серебро, тантал, титан и др. Многие из этих металлов, а также платина, ниобий и цирконий мало подвержены коррозии и в присутствии значительных количеств муравьиной кислоты. Однако большинство перечисленных материалов либо слишком дефицитны, либо по физико-механическим свойствам непригодны для изготовления производственной аппаратуры. Из числа конструкционных материалов, применяющихся на практике, достаточно стойки по отношению к формалиновым растворам, в особенности при повышенной температуре, далеко не все. С учетом практической неизбежности накопления хотя бы небольших количеств муравьиной кислоты, непригодны для работы в формалиновых средах, помимо углеродистых сталей, хромистые сплавы, а также некоторые марки алюминия, бронзы, латуни, чугуна и т. д. Напомним, что в соответствии с действующим ГОСТом по коррозионной стойкости металлы разделяются на шесть групп и оцениваются по десятибалльной шкале, причем при скорости коррозии выше 0,1 мм/год материал считается пониженно стойким. [c.30]


    Однако на медицинские нужды расходуется лишь 5% производимого в мире тантала, около 20% потребляет химическая промышленность. Основная часть тантала — свыше 45% — идет в металлургию. В последние годы тантал все чаще используют в качестве легирующего элемента в специальных сталях — сверхпрочных, коррозионностойких, жаропрочных. Действие, оказываемое на сталь танталом, подобно действию ниобия. Добавка этих элементов к обычным хромистым сталям повышает их прочность и уменьшает хрупкость после закалки и отжига. [c.175]

    Сталь хромистая Тантал [c.73]

    Под действием сухого хлороводорода углеродистая сталь, серые чугуны, хромистые и хромоникелевые стали, алюминий, медь, никель, свинец, титан не корродируют. В контакте с влажным хлороводородом применяют свинец, тантал, хастеллой Б, углеграфиты. Рекомендуется применение гуммированной аппаратуры (в отсутствие органических примесей), а также футеровка металлической конструкции фарфором, керамикой, эмалью, стеклом. [c.215]

    Склонность к межкристаллитной коррозии хромистых и хромоникелевых сталей можно также предотвратить легированием металла такими элементами, как титан, ниобий, тантал и др. Эти элементы образуют с углеродом труднорастворимые карбиды, устраняя тем самым возможность образования карбидов хрома. [c.32]

    Иногда применяют добавочное модифицирование хромистых сталей некоторыми элементами. Так, например, добавки НЬ, Та и Т1 (порядка 0,5 до 1,5%) несколько измельчают зернистость этих сталей. Наиболее изучено влияние НЬ (до 1,2—1,75%), который заметно снижает рост зерен при нагреве до 1100—1300 Аналогичным образом действуют тантал и титан. Эти добавки одновременно несколько увеличивают прочность при повышенных, а также ударную вязкость при обычных температурах. Однако они не устраняют тепловой хрупкости в случаях выдержки при температурах 400—500°. Помимо этого, добавки титана или ниобия в количествах, достаточных для связывания углерода в соответствующие карбиды, увеличивают пластичность сплава, так как понижают самозакаливание сталей при воздушном охлаждении и несколько повышают их коррозионную устойчивость в растворах. Добавки молибдена порядка 1 —1,5% заметно повышают устойчивость этих сталей в растворах, содержащих хлор-ионы (например, они становятся устойчивыми в нагретых до 80—90° растворах 20—60%-ного хлористого цинка). [c.487]

    Факторы, влияющие на точечную коррозию. Природа металла. Отдельные металлы и сплавы в разной степени проявляют склонность к точечной коррозии. Более других подвержены точечной коррозии пассивные металлы и сплавы. В растворах хлоридов наибольшую стойкость обнаруживают тантал, титан, хром, цирконий и их сплавы весьма склонны к питтингообра--зованпю в этой среде высоколегированные хромистые и хромоникелевые сплавы. Склонность к точечной коррозии ие всегда одинакова, она зависит от химического состава стали. Чем выше в стали содержание хрома, никеля и молибдена и чем меньше углерода, тем больше ее сопротивляемость точечной коррозии. Коррозионностойкие стали тем меньше подвержены пит-тингу, чем однороднее их структура, в которой должны отсутствовать включения карбидов и других вторичных фаз, а также неметаллические фракции, в частности окислы и сульфиды, уменьшающие стабильность пассивного состояния и облегчающие разрушение пассивирующей пленки ионами хлора. Некоторые виды термообработки, приводящие к улучшению однородности стали, благоприятно сказываются на ее сопротивляемости точечной коррозии. [c.443]


    Коррозионностойкие хромистые и хромоникелевые стали особенно хорошо подходят для анодной защиты. Анодная защита применяется в основном по отношению к серной кислоте (см. рис. 20.16), олеуму и фосфорной кислоте Н3РО4 [13, 20, 23—25]. Ввиду хорошей пассивируемости титана анодная защита может представить интерес также и для этого материала. Для защиты в серной и соляной кислотах применяют танта-ловые аноды [26, 27]. Анодная защита опробована также по отношению к фосфорной Н3РО4 и органическим кислотам [17]. [c.395]

    Самой высокой коррозионной устойчивостью в расплавленном свинце обладают тантал и ниобий. Железо, углеродистая сталь, хромистые и хромоникелевые стали имеют хорошую устойчивость до 500—600°С. При более высоких температурах она понижается, так как наблюдается растворение преимущественно по границам зерен. Стали перлитного типа устойчивы к действию свинца при температурах до 600°С. Хромистые нержавеющие стали ферритного и мартенсигного типов (1X13, Х17) обладают высокой коррозионной устойчивостью до 540°С. [c.90]

    КИСЛОТОСТОЙКИЕ МАТЕРИАЛЫ — материалы, отличающиеся повышенной кислотостойкостью, вид химически стойких материалов. В пром. масштабах используются с середины 18 в. Различают К. м. металлические и неметаллические. К металлическим К. м. относятся сплавы на основе железа, а также цветные металлы и их сплавы (см. также Кислотостойкие сплавы). Кислотостойкие сплавы на основе железа углеродистые стам (нелегированные, низколегированные), содержащие до 1% С высоколегированные стали, имеющие в своем составе хром, никель, медь, марганец, титан и др. хим. элементы чугуны (нелегированные, высоколегированные), содержащие более 2,5—2,8% С. Кислотостойкие цветные металлы никель, медь, алюминий, титан, цирконий, олово, свинец, серебро, ниобий, тантал, золото, платина и др. Углеродистые стали стойки в растворах холодной азотной к-ты (концентрация 80—95%), серной к-ты (выше 65%) до т-ры 80° С, в плавиковой к-те (выше 65%), а также в смесях азотной и серной к-т. На углеродистые стали сильно действуют органические к-ты (адипиновая, муравьиная, карболовая, уксусная, щавелевая), особенно с повышением их т-ры. Высоколегированные стали, отличаясь повышенной стойкостью к коррозии металлов (см. также Коррозионностойкие материалы), являются в то же время кислотостойкими. Большинство легирующих добавок значительно повышают кислотостойкость сталей. Так, медь придает хромоникелевым сталям повышенную стойкость к серной к-те. Сталь с 17—19% Сг, 8-10% Мп, 0,75-1% Си, 0,1% С и 0,2—0,5% Si стойка в азотной к-те (любой концентрации и т-ры вплоть до т-ры кипения) и многих др. хим. соединениях (см. Кислотостойкая сталь). Кислотостойки высоколегированные чугуны никелевые, хромистые (см. Хромистый чугун), алюминиевые (см. Чугалъ), высококремнистые (ферросилиды), хромоникель-медистые (см. Нирезист), хромони-келькремнистые (никросилал). Наиболее распространены ферросилиды [c.586]

    В расплавленном свинце наиболее высокой коррозйШ- ной стойкостью обладают тантал и ниобий. Железо, углеродистые, хромистые и хромоникелевые стали стойки до [c.546]

    ХЛор влaжн IЙ. При комнатной температуре углеродистые стали в хлоре корродируют при относительной влажности свыше 3%, а хромистые и хромоникелевые — свыше 1,5%- Никель и ло-верхности, защищенные химическим никелевым покрытием относительно стойки при влажности хлора до 30%. Титан и тантал во влажном хлоре устойчивы. При повышении температуры влажного хлора скорость коррозии быстро снижается по сравнению со скоростью коррозии при комнатной температуре, а при температуре выше точки росы влияние влаги незначительно. Это отмечается до содержания 150 г воды в 1 хлора. Учитывая, что влажный хлор разрушает большинство металлов. Целесообразно при низких давлениях применять неметаллическую арматуру из керамики (фарфора), стекла, фторопласта и других химически стойких материалов. [c.105]

    Окись углеррда — Высокая Хромистая сталь (до 1150°), хромоникелевая сталь, сталь с 5% Мй, тантал (до 350 ) [c.34]

    Фосфорная кислота Высокая концентрация Разбавленная То же Обычная Высокая Обычная Те же и, кроме того, хромистая сталь, платина, стекло, кварц, фарфор, керамика, К-бетон, К-цемент, эбонит (до 75% НзРО , до 52°) Те же, что и для высокой концентрации при высокой температуре и, кроме того, кремнистая медь, тантал (до 33% НвР04 при 100°), резина (до 110°) Те же, что и для высокой концентрации при высокой температуре и, кроме того, железо, никелевая сталь, алюминий (до 5% НаР04) и никель (до 20% НзР04), стекло, кварц, фарфор, керамика, резина (для прокладок) [c.39]

    Электрохимические выпрямители. Алюминий, тантал и некоторые другие металлы обладают свойствами вентиля, если их поместить в определенные раство-рьг. При работе выпрямителя на его поверхности образуется пленка. Пленка проницаема для водородных катионов и непроницаема для анионов, исключая анионы, разрушающие пленку. Ток может проходить только в направлении на электрод вентиля, в обратном направлении, если пленка не пробита высоким напряжением, ток не проходит. В дополнение к электроду вентиля каждый элемент должен иметь второй электрод, служащий анодом. Он должен бьить рассчитан на работу в высококоррозийной среде и пропускать ток в любом направлении. Для этой цели обычно применяют свинец, уголь, железо, хромистую сталь и кремниево-железные сплавы. Танталовые выпрямители, применяемые в устройствах железнодорожной сигнализации, содержат катод из металлического тантала и анод из свинца или свинцовых сплавов, помещенные в раствор серной кислоты с небольшой добавкой сульфата железа. Удельный вес электролита около 1,250. [c.307]


    Были проведены сравнительные испытания стойкости против износа различных материалов для турбинных лопаток [1]. Образцы укреплялись на вращающемся колесе (окружная скорость вращения 366 м1сек) и при вращении пересекали струю воды толщиной 3,2 мм. Износ образца, покрытого слоем сплава № 6, определяемый как потеря веса, равнялся 0,03 /о в минуту, в то время как у нержавеющей хромистой стали (12 /о Сг) эта величина равнялась 0,27о. У тантала—0,357о. У 57о никелевой стали — 0,47о и у нитраллоя — 0,170- [c.298]


Смотреть страницы где упоминается термин сталь тантал хромистую: [c.126]    [c.281]    [c.12]    [c.35]    [c.42]    [c.281]    [c.298]   
Коррозия металлов Книга 2 (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Сталь хромистая

Тантал

Тантал сталях



© 2024 chem21.info Реклама на сайте