Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вода толщина поверхности

    Однако надо сразу оговориться, что вышеприведенное объяснение имеет силу только в отношении мелкого угля и небольшого количества свободной влаги. При этом, ввиду большой поверхности частиц угля и небольшого количества воды, толщина поверхности пленки минимальна и твердый контакт (лед) между отдельными частицами угля при его замерзании механически совершенно непрочен (в особенности при движении, например при транспортировке шихты). [c.166]


    Другой вид кипения — пленочное кипение— наступает, например, в первой стадии быстрого охлаждения раскаленного стального стержня при погружении его в воду. На поверхности стального стержня мгновенно образуется паровой слой, который отличается от пузырьков, образующихся при ядерном кипении, только большим начальным объемом. После отрыва паровой пленки на стальном стержне толщина пленки вновь возрастает и процесс повторяется (явление Лейденфроста — стабильное пленочное кипение), пока стальной стержень не охладится до наступления обычного ядерного кипения. [c.102]

    МС-006, розовый ГОСТ 10277-90 Наносится шпателем или пневмораспылителем по грунтованной поверхности, легко шлифуется всухую и с водой. Толщина одного слоя не более 100 мкм, число слоен шпатлевки не более пяти Ксилол 18...22 30 мин на один слой [c.37]

    Влияние температуры на структурные эффекты хорошо прослеживается и в опытах с пленками воды на поверхности кварца. При повышении температуры, как было показано ранее [30], постепенно уменьшается толщина полимолекулярных адсорбционных пленок, что обусловлено утончением граничных слоев воды. При 65—70 X толщина пленок падает до монослоя, что хорошо согласуется с результатами других обсуждавшихся выше экспериментов. [c.10]

    Для изучения свойств граничных слоев связанной воды толщиной 7,5—10 нм в качестве модельных объектов обычно используются дисперсии На- и Ь1-монтмориллонита. Эти препараты самопроизвольно диспергируются в воде вплоть до элементарных силикатных слоев толщиной 0,94 нм [102]. Обладая развитой поверхностью (5 — 750 м /г [66]), частички Ыа- и Ь1-монтмориллонита иммобилизуют большое количество воды, что безусловно облегчает изучение ее свойств. [c.38]

    Согласно трехслойной модели строения гидратной оболочки элементарных пластинчатых частиц слоистых силикатов [71, 72], граничный слой воды толщиной 8—10 нм состоит из двух частей более прочно связанного адсорбционного и анизотропно-доменного слоев. Авторы [120] также выделили непосредственно прилегающую и более прочно связанную с гидрофильной поверхностью часть граничного слоя (по нашей терминологии—адсорбционно связанную воду), состояние которой менее чувствительно к изменениям концентрации электролита. В работе [121] для описания изменения структурной составляющей расклинивающего давления в системе мусковит — связанная вода использована двойная экспонента Пз = Д ехр (—h/l) + + /(оехр(—Н/1о) со значениями / = 0,95ч-1,1 нм и /о = 0,17-ь - 0,30 нм. Толщина внутренней части граничного слоя для мусковита составляет 1 нм [121], что совпадает с толщиной адсорбционно связанного слоя воды в трехслойной модели гидратной оболочки пластинчатых частиц слоистых силикатов [71]. [c.41]


    Изменения термической подвижности воды в дисперсных материалах в определяющей мере обусловлены различной толщиной смачивающих пленок воды на поверхностях с разной плотностью заряда. [c.77]

Рис. 6.10. Зависимость толщины (Л) незамерзающих пленок воды на поверхности кварцевых капилляров от температуры (/). Рис. 6.10. <a href="/info/215275">Зависимость толщины</a> (Л) незамерзающих <a href="/info/501881">пленок воды</a> на <a href="/info/502396">поверхности кварцевых</a> капилляров от температуры (/).
    Результаты этих расчетов представлены на рис. 6.10 (кривая /). Максимальные значения к близки по порядку величины к толщинам адсорбционных а-пленок воды на поверхности кварца при комнатной температуре [42]. При понижении температуры толщина пленок уменьшается, составляя л 1,5нм при —6°С. Вид температурной зависимости к(1) хорошо согласуется с полученной ранее в работе [315] температурной зависимостью толщины незамерзающих прослоек воды между поверхностью льда и частицами аэросила (кривая 2). Количественное сопоставление кривых / и 2 не имеет смысла, поскольку они относятся к различным системам в первом случае — к незамерзающим адсорбционным пленкам, граничащим с газом, и во втором — к незамерзающим прослойкам между льдом и твердой поверхностью частиц. Еще более высокие значения/г были получены для пленок воды на поверхности льда [308]. Их толщина составляет около 5,0 нм при —6°С, возрастая до 10,0 нм при повышении температуры до —1 °С. Таким образом, толщина незамерзающих слоев воды существенным образом зависит от того, в контакте с какими фазами они находятся, т. е. от природы поверхностных сил, энергии связи и способа ориентации молекул воды вблизи различных поверхностей. [c.115]

    Из данных табл. 7.3 следует, что вблизи поверхности (независимо от ее кривизны) структура водородных связей искажается таким образом, что система приобретает ориентационную упорядоченность. Плоскости молекул воды расположены преимущественно параллельно ограничивающей поверхности в данной точке. Для пленки воды у поверхности с активными центрами значения средних по толщине ориентационных характеристик согласуются с данными для пленок со свободными границами. Более детальный анализ показывает, что отличия в ориентационной упорядоченности молекул проявляются только в пределах первого монослоя у поверхности — там, где молекулы жидкости могут образовывать водородные связи с активными центрами. [c.125]

    В работах [30, 488] изучено влияние температуры на толщину полимолекулярных адсорбционных пленок воды на поверхности плавленого кварца. Если при >65°С толщина пленки не превышает монослоя, то при 10 °С она составляет приблизительно 10 нм. Температурная зависимость ряда свойств, таких, как теплопроводность [489, 490], вязкость [491], амплитуда колебаний частиц при электрофорезе в переменном поле вблизи подложки [492], скачкообразно изменяются при 65—70 °С. Такое поведение, так же как и исчезновение эффекта термоосмоса вблизи 70°С [463], авторы объясняют полным разрушением ГС. [c.172]

    В табл. 11.2 приведены результаты, полученные при исследовании объемных эффектов замораживания при —8°С образцов одного из латексов, различающихся степенью адсорбционной насыщенности поверхности частиц эмульгатором [529]. Снижение плотности упаковки адсорбционного слоя эмульгатора приводит к уменьшению эффективной толщины прослоек незамерзающей воды у поверхности латексных частиц. [c.192]

    Рассмотрим теперь, от каких физических причин зависит смачивание или несмачивание поверхности. Для этого следует обратиться к анализу изотерм расклинивающего давления смачивающих пленок воды, показанных на рис. 13.3. Кривыми 1—3 здесь изображены зависимости толщины h водных пленок от расклинивающего давления, или, что то же, от капиллярного давления равновесного с пленкой мениска. Кривая 1 относится к пленкам воды на поверхности кварца. Точками показаны экспериментальные данные, сплошная кривая представляет собой рассчитанную теоретически изотерму, учитывающую действие в пленке трех составляющих расклинивающего давления молекулярной Пт, электростатической Пе и структурной Hs [47]. Ветви изотермы, где dU/dh<.0, отвечают устойчивым состояниям пленки. Пленки воды на кварце в области h между 60 и 10 нм (кривая 1) неустойчивы и не реализуются. При постепенном утончении водных пленок вначале возникает метастабильное состояние толстых (/г>100 нм) -пленок. Время их перехода в термодинамически устойчивое состояние тонких -пленок зависит от близости капиллярного давления к критическому Р и от площади -пленок. Чем площадь больше, тем выше вероятность образования в -пленке зародыша а-фазы. Существование толстых -пленок воды обусловлено силами электростатического отталкивания заряженных поверхностей пленки (Пе>0). Так как в этом случае По/го-ЬА>0, -пленки полностью смачиваются водой. Ниже для этого случая будут сопоставлены экспериментальные значения /г с теоретическими, рассчитанными по уравнению (13.9). [c.216]


    Увеличение концентрации растворенных веществ приводит к повышению осмотического давления раствора, что снижает эффективную движущую силу процесса, а также, как правило, возрастанию вязкости. Все это вызывает снижение проницаемости. С увеличением концентрации уменьшается толщина слоя связанной воды на поверхности и в порах мембраны, ослабевают силы взаимодействия между ионами и молекулами воды в растворах неорганических веществ [159], что приводит к снижению селективности. [c.188]

    В приведенном выводе не учитывались пространственное затухание ударной волны и движение свободной поверхности при выходе на нее фронта волны. При отражении ударной волны тонкий слой воды толщиной несколько миллиметров, прилегающий к поверхности, оказывается под перепадом давления АР- 2Р , в результате этого свободная поверхность получает начальную вертикальную скорость  [c.68]

    Нефть в пленочной форме обладает повышенным сопротивлением течению [5]. Вытеснение с твердой поверхности пленочной нефти, если она не разорвана водой, происходит только за счет некоторого уменьшения толщины пленки под действием касательных сил при движении потока воды по поверхности пленок с образованием на этой поверхности капель нефти. Самопроизвольно этот процесс может протекать с уменьшением энергии системы. Свободная поверхностная энергия системы нефть — вода — порода будет меньше, если угол избирательного смачивания воды меньше 90°. Таким образом, пленочная нефть может разрываться водой в тех случаях, когда она вытесняется с твердой поверхности благодаря избирательному смачиванию. [c.97]

    При установке протектора на днище резервуара возникает защитный электрический ток по цепи протектор —. дренажная вода — защищаемая поверхность днища и нижние пояса резервуара. В начальный момент после установки протектора наблюдается установление максимального тока протектора с плотностью 0,02—0,05 А/м . По мере образования на защищенном днище резервуара катодного осадка наблюдается снижение тока протектора до плотности 0,005—0,002 А/м и увеличение разности потенциалов днище — электролит. Катодный осадок образуется на поверхности днища в течение 0,5—3 мес. работы протектора. Зона защиты протектора увеличивается с увеличением толщины слоя подтоварной воды, удельного поляризационного сопротивления, разности потенциалов протектор — днище и с уменьшением удельного сопротивления электролита. [c.155]

    При хранении нефти в стальных резервуарах вода, содержащая соли, скапливается в нижней части резервуара, образуя так называемую подтоварную воду. Толщина слоя подтоварной воды колеблется и у промысловых резервуаров может достигать и более высоты резервуара. Содержание солей в подтоварной воде может достигать до 8% и выше. Вследствие этого внутренняя поверхность днищ и нижних поясов стальных резервуаров находится в непосредственном контакте с подтоварной водой, которая является электролитом. Стенки и днище резервуара подвергаются электрохимической коррозии, которая носит питтинговый характер. [c.223]

Рис. 5. Температурная зависимость толщины а-пленок /iq (при pip, = 1) воды на поверхности кварца. Рис. 5. <a href="/info/26121">Температурная зависимость</a> толщины а-пленок /iq (при pip, = 1) воды на поверхности кварца.
    Алюминий и его сплавы являются важным конструкционным материалом в самолето- и ракетостроении. На воздухе поверхность алюминия и его сплавов покрыта естественной окисной пленкой, толщина которой в обычных атмосферных условиях 0,005—0,2 мк. Пленка повышает химическую устойчивость алюминия, но не может служить надежной защитой против коррозии. При эксплуатации изделий с естественной окисной пленкой во влажной атмосфере или в морской, воде на поверхности алюминия образуется белый налет продуктов коррозии. Для повышения сопротивления коррозии окисную пленку на алюминии и его сплавах искусственно утолщают химическим или электрохимическим оксидированием. [c.145]

    Вулканическая деятельность во всех ее проявлениях играла в этом отношении выдающуюся роль. Обогащая обширные зоны поверхности, в том числе и те, которые граничили с водоемами, соединениями металлов, вулканы способствовали развитию каталитических реакций. Вещества, выбрасываемые во время извержений, получаются в активном состоянии это, например, оксид кремния (IV) в форме высокопористой массы —пемзы, образующейся при застывании кислых лав (ее пористость достигает 80%) и др. Другой важной породой, которая могла функционировать и как адсорбент, фиксирующий на своей поверхности разнообразные частицы, и как катализатор, является глина. Глины относят к числу древнейших пород. Глинистые минералы (например, монтмориллонит) имеют пластинчатое строение силикатные слои, максимальное расстояние между которыми равно приблизительно 1,4 нм, разделены слоями молекул воды толщина этих слоев может изменяться в широких пределах. Глины обратимо связывают катионы и таким образом могут служить в качестве регулятора солевого состава окружающей водной среды. Скопление органических веществ на поверхности глинистых минералов, возможно, сыграло решающую роль в появлении предбиологических структур и возникновении жизни (Д. Бернал). По Акабори, из формальдегида, аммиака и циановодорода в абиогенную эру образовался амино-ацетонитрил, который подвергался гидролизу и полимеризации на поверхности глин, образуя вещества, близкие к белкам. Акабори показал, что нагревание аминоацетонитрила с кислой глиной ведет к появлению продукта, дающего биуретовую реакцию (реакция на белок). Твердые карбонаты, которые входят в большом количестве в состав земной коры, вероятно, катализировали процесс образования углеводов. Гидроксид кальция также может служить катализатором в таких процессах. Исходным веществом для синтеза углеводов служит формальдегид. Прямым опытом доказано (Г. Эйлер и А. Эйлер), что гликолевый альдегид и пентозы получаются из формальдегида в присутствии карбоната кальция. Схему образования углеводов из простейших соединений предложил М. Кальвин. [c.377]

    Тонкий слой жидкости (воды) толщиной /1<0,15 мк, разделяющий две твердые поверхности, приобретает свойства, отличные от свойств жидкости в объеме у нее появляется упругость формы, присущая твердому телу. Расклинивающее давление В дополнение к внешнему действует на тела, ограничивающие [c.118]

    Эти данные весьма поучительны, поскольку представляют собой эффективную толщину (г/см я см /см = см) слоя свободной воды на поверхности. Они близки к диаметру молекулы жидкой воды (0,276 нм) и льда (0,31 нм). Таким образом, толщина поверхностного слоя воды над водным раствором близка к статистическому монослою, несколько уменьшаясь с ростом С2, вследствие диффузионного внедрения электролита в поверхностный слой. [c.84]

    Многочисленные эксперименты подтверждают изменение структуры воды в поверхностных пленках. Так, методом ИК-спектрометрии на кварце установлена определяющая роль поверхностных водородных связей, искажающих сетку Н-связей, существующую в объеме воды . Исследование адсорбционных слоев на пакетах кварцевых пластин тем же методом показало сдвиг максимума полосы поглощения, интерпретируемый как усиление интенсивности Н-связей в слоях воды толщиной 2—4 нм. Полученные результаты хорошо согласуются в отношении толщины пленок к с эллипсометрическими измерениями. Значения Н возрастали от 4 до 5,3 нм при р ро 1 с уменьшением краевого угла 0, т. е. с ростом гидрофильности кварца наоборот, при гидрофобизации поверхности кварца (триметил-хлорсиланом) толщина пленки становилась соизмеримой с ошибкой опыта (0,3 нм). Другие эллипсометрические исследования адсорбционных слоев воды на различных твердых поверхностях показали, что толщина их 10 нм и также связана с величиной краевого угла. Многочисленные исследования граничных слоев, моделью которых являются пленки, различными методами (гл. XI. 1) приводят к близким оценкам толщины слоев с измененной структурой, однако для таких слоев, постепенно переходящих в жидкую фазу, при отсутствии физической границы раздела оценка толщины может сильно варьировать в зависимости от метода (см. раздел У.1). Интересно отметить, что с повышением температуры до 70 °С толщина поверхностных пленок резко уменьшается это указывает на существенную роль Н-связей, нарушающихся вследствие усиления теплового движения молекул воды. [c.115]

    На заводе Карпет фирмы Армстронг Корк вблизи г Ланкастера (шт. Пенсильвания) осадок, содержащий тяжелые металлы, смешанный с каучуковым латексом, собирают сначала в питательных резервуарах на территории завода, пока его не станет достаточно для заполнения отсека для захоронения осадков сточных вод. Каждый открытый для захоронения осадков котлован остается открытым приблизительно в течение 6 мес. Он выкладывается известняком на толщину не менее 75 мм. Осадок сточных вод, смешанный с летучей золой или с землей, вываливается в котлован и сразу же засыпается землей. Сверху делается подсыпка по контуру котлована, чтобы свести до минимума просачивание сточной воды с поверхности через котлован [43]. [c.38]

    При небольщих количествах сточных вод (до 1000 м /сут) биологическое окпслеиие успешно проводят в погружных дисковых враи ающихся фильтрах. Биопленка развивается на поверхности тонких пластмассовых дисков большого диаметра, насаженных на вращающийся вал. Диаметр дисков 2—3,5 м, толщина— 10—20 мм, зазор между ними и цилиндрическим днищем аппарата 25—50 мм, расстояние между дисками — 15—20 мм. Низ дисков примерно на одну треть погружен в аппарат (бассейн), содерлсащий сточную воду. Когда поверхность диска находится на воздухе, происходит аэрация. Органические загрязнения сорбируются биопленкой при погружении дисков в воду и эффективно окисляются в бнопленке при ее прямом контакте с воздухом. Предельные нагрузки по БП1<5 определяются прежде всего природой загрязнений и составляют 7—100 г Ог/сут на [c.104]

    Экспериментальная проверка уравнения (1.22) проведена для смачивающих а-пленок воды на поверхности кварцевых капилляров на участке между менисками, находящимися при различной температуре [62]. По известным для воды значениям (да/дТ) = —1,6-10 Н СМ -град и известным из опытов г и grad Т можно было определить отношение h /ц. Принимая для тонких пленок ti=1,5tio, где т1о — вязкость объемной воды, для серии из 16 опытов в капиллярах радиусом от I до 10 мкм были получены значения h в интервале от 5 до 10 нм, что близко к эллипсометрическим оценкам толщины а-пленок [45]. Разброс значений толщины (от 5 до 10 нм) связан в данном случае с влиянием гистерезиса краевого угла — неполным смачиванием объемной водой а-пленок. Для объяснения наблюдавшегося разброса достаточно допустить, что наступающий угол 0л составляет 8—10°, а отступающий угол 0 близок к 0°, что согласуется с известными экспериментальными данными. [c.30]

    Существование граничных слоев воды толщиной 7—10 нм вблизи гидрофильной твердой поверхности приводит к появлению структурной составляющей расклинивающего давления. Современное состояние исследований структурных сил освещено в работах Б. В. Дерягина и Н. В. Чураева [42, 45—47, 116]. [c.40]

    Существование незамерзающих прослоек воды в контакте со льдом позволяет объяснить еще целый ряд явлений например, движение под действием градиента температуры вмерзших в лед твердых частиц и пузырьков воздуха [324, 325] отталкивание или захват частиц движущимся фронтом кристаллизации [326, 327]. Движение вмороженных частиц будет, естественно, направлено в сторону, обратную термокристаллизационному потоку. При понижении температуры скорость такого термофореза снижается вследствие уменьшения толщины прослоек. Уменьшается скорость термофореза также и при повышении теплопроводности частиц за счет снижения локальных значений градиента температуры. Экспериментальные подтверждения явления термофореза, связаннт1го с течением незамерзающих прослоек воды по поверхности вмороженных в лед стеклянных шариков, получены в работах, [324, 325]. [c.110]

    Вопрос о существовании незамерзающих прослоек воды у поверхности латексных частиц представляет интерес в связи с изучением природы устойчивости латексов при замораживании [526]. Впервые этот метод при исследовании латексов был применен в работе [527]. Методика дилатометрических и термографических измерений и обработки результатов приведена в [526—529]. Определялись объемные и тепловые эффекты фазового перехода при замораживании или плавлении диализованных латексов. На рис. 11.1 приведены в качестве примера типичные дилатограммы замораживания исследованных образцов. Эффективную толщину незамерзающих прослоек воды (А) вычисляли по формуле  [c.191]

    В ходе исследования моделей нефтесборщиков были разработаны стохастические математические модели процесса нефтесбора регрессионного типа, полученные на основе ортогональных композиционных. матриц планирования эксперимента второго порядка. Модели представляют собой системы 10 уравнений, описывающих зависимость 10 основных факторов процесса нефтесбора (производительность, селективность и т.д.) от угловой скорости вращения барабана, толщины поглощающей оболочки, толщины и вязкости слоя собираемого нефтепродукта. Некоторые результаты моделирования представлены на рис.2. Выявлено, что производ1ггельность нефтесборщика в зависимости от вязкости собираемого продукта носит экстремальный характер, при этом по мере роста вязкости производительность вначале уменьшается за счет ухудшения поглощаю щей способности сорбента, а зате.м начинает возрастать за счет адгезии продукта на поверхности поглощающей оболочки. Рассмотрены также особенности стекания капель воды по поверхности поглощающей оболочки и роль усилия отжима нефти на нефтесбор. [c.98]

    Поверхностный слой жидкости вследствие 1Юдвижности молекул в объеме, а такн<е в результате постоянно протекающих процессов испарения и конденсации находится в состоянии непрерывного обновления. Так, среднее время жизни молекулы воды на поверхности составляет около с. Плотность граничного слоя между водной фазой и ее насыщенным паром изменяется непрерывно от плотности жидкой воды до плотности ее пара. В то же время межмолекулярные силы обеспечивают наличие поверхностного слоя жидкости определенной толщины. Обычно толщина поверхностного слоя жидкости составляет несколько молекул. Чем больше межмолекулярные силы, тем на меньшее расстояние молекулы могут диффундировать с поверхности, т. е. тем меньше толщина поверхностного слоя. Внутренняя граница слоя соответствует началу изменения структуры жидкости в объеме. Благодаря подвижности жидкости ее поверхность является гладкой и сплошной, или эквипотенциальной, т. е. все точки иоверхности энергетически эквивалентны. [c.19]

    Термин поверхностно-активные вещества (ПАВ) обычно применяют к специфическим веществам, обладающим очень большой поверхностной активностью по отношению к воде, что является следствием их особого строения. Молекулы ПАВ имеют иеиоляр-иую (углеводородную) часть и полярную, представленную функциональными группами —СООН, —NH2, —ОН, —О—, —SO2OH и др. Углеводородные радикалы выталкиваются пз воды на поверхность, и их адсорбция Г > 0. ПАВ типа обычных мыл (олеаг натрия) в концентрации 10 моль/см (1 моль/л) понижают сг воды ири 298 К с 72,5-10-3 до ЗО-Ю- Дж/м что даег g = A-W гиббсов. Это значит, что в определенной толщине поверхностного слоя концентрация ПАВ в S-IO раз (т. е. в десятки тысяч раз) превышает концентрацию ПАВ в объеме раствора. [c.41]

    Состояние воды у поверхности полностью еще не установлено. Дерягиным и другими исследователями показано, что значительные слои воды в действительности являются неподвижными. Имеется множество данных, согласующихся с этой теорией, но они не являются абсолютными. Большинство исследователей предполагают существование одного или двух молекулярных слоев вокруг ионов, связь которых ослабевает при увеличении расстояния. Имеются некоторые данные против наличия толстых вязких слоев, полученные из кинетики утончения пленки пены. Ликлема, Шолтен и Майзельс (1965) нашли, что утончение описывается гидродинамическим уравнением, основанном на предположении о нормальной вязкости они установили, что любые вязкие слои не могут достигать толщины 10 А. Тем не менее, эффективная вязкость внутри слоя Гуи остается неопределенной в теории электрофореза. [c.101]

    Проведено также сопоставление работы ПАВ-1 и одного из наиболее эффективных импортных моющих средств Fairy . В этих экспериментах в чаши диаметром 255 мм заливалось по 1 л воды, на поверхность которой наливался слой шаимской нефти толщиной 1 мм и объемом 51,1 мл, затем в центр нефтяного пятна вводили каплю реагента и фиксировали изменение размеров очищенного от нефти водного зеркала во времени (в течение 10 мин) (табл. 3.13). [c.119]

    Во всех моделях нефтесборщиков рабочие барабаны выполнены диаметром 106 мм и шириной 60 мм. На внешней поверхности обечаек барабанов площадью 200 см размещались нефтепоглощающие оболочки с сорбентом. В качестве сорбента были испытаны вещества, проявившие высокую величину нефтепоглощения, — ватин и поролон. Селективный поглотитель ватин испытан как в форме двойного слоя, так и с армированием двойного слоя капроновой сеткой с целью повышения прочности оболочки. Неселективный сорбент по-ро,яон испытывали из-за высокой потенциальной нефтеемкости. Барабаны имели привод через редуктор от электродвигателя, закрепленного на раме нефтесборщика (рис. 4.2). Аппарат помещали в емкость с водой, на поверхность которой из дозатора постепенно за 1-10 мин вытекало 1-1,5 л нефти, образуя на поверхности воды слой толщиной 5-10 мм. В ряде опытов осуществлялась полная зачистка водной поверхности от нефтяной пленки. Число оборотов барабанов с нефтепоглощающими оболочками варьировалось с помощью редуктора в пределах от 14 до 97 об/мин. [c.125]

    Прямым подтверждением структурной природы устойчивости а-пленок служат наблюдения за температурной зависимостью их толщины [191. На рис. 5 показана зависимость толщины /iq (при pIps = 1) а-пленок воды на поверхности кварца от температуры, полученная методом эллипсометрии. Как уже отмечалось, П - [c.292]

    Общее количество выпадающих ежегодно осадков соответствует покрывающему весь земной шар слою воды толщиной в 1 м (тогда как конденсация всей единовременно содержащейся в атмосфере влаги дала бы только слой в 24 мм). Распределение их по земной поверхности весьма неравномерно. Так, в Черрапунджи (Индия) средне- [c.144]

    Высказано предположение, что понижение точки замерзания (или плавления) можно интерпретировать, исходя только из свойств вещества в адсорбированном состоянии, для которого условия кристаллизации и плавления будут иными, чем в объеме нормальной жидкости. В связи с этим следует отметить некоторые особенности поверхности льда. На основании чисто теоретических расчетов Флетчер [53] нашел зависимость толщины квазижидкой пленки воды на поверхности льда от температуры. Так, при температуре —20 °С толщина пленки воды составляет единицы нанометров. Экспериментальное подтверждение существования квазижидкой пленки [c.50]


Смотреть страницы где упоминается термин Вода толщина поверхности: [c.39]    [c.370]    [c.374]    [c.140]    [c.206]    [c.105]    [c.83]    [c.278]    [c.57]    [c.127]   
Физическая биохимия (1949) -- [ c.221 ]




ПОИСК





Смотрите так же термины и статьи:

Толщина



© 2024 chem21.info Реклама на сайте