Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цепной механизм химических превращений и его элементарные стадии

    Цепной механизм химических превращений и его элементарные стадии [c.267]

    ЦЕПНОЙ МЕХАНИЗМ ХИМИЧЕСКИХ ПРЕВРАЩЕНИИ и ЕГО ЭЛЕМЕНТАРНЫЕ СТАДИИ [c.269]

    Радикалы, вышедшие из клетки, могут вступать в различные радикальные и радикально-цепные реакции в среде, спосо бной к химическому превращению. Этот опыт является модельным для установления механизма процесса инициирования радикально-цепных реакций. Различные релаксационные методы (импульсный фотолиз, метод остановленной струи и др.) позволяют определить константы скоростей элементарных стадий окисления. Импульсный фотолиз и импульсный радиолиз дают прямую информацию об элементарных процессах с участием короткоживущих промежуточных продуктов. Возможность регистрации последних при импульсном [c.8]


    Из описанных физических процессов, имеющих место в разряде, ясно, что химическое превращение может итти различными путями в зоне катодного падения потенциала и в положительном столбе. При соответствующем выборе расстояния между электродами и прилагаемой разности потенциалов положительный столб можно практически совершенно устранить. Скорость реакции в зоне катодного свечения очень сильно зависит от материала катода. Влияние материала катода можно представить себе двояко во-первых, влияние твердого катода как катализатора в обычном смысле и, во-вторых, влияние испаряющихся с поверхности катода атомов, которые в различных случаях могут сильно ускорять или замедлять реакцию. Химический процесс в таких условиях оказывается весьма сложным. Поэтому ни в одной из исследованных таким образом реакций нельзя с полной достоверностью установить механизм элементарных стадий. Выход реакции в зоне катодного свечения обычно очень мал и составляёт лишь несколько молекул на электрон. Влияние давления и температуры на реакцию в разряде невелико. Вызвать при помощи катодного свечения воспламенение оказалось невозможным. Опытные данные указывают на то, что возникающие в этой зоне активные частицы весьма эффективно дезактивируются, в основном, очевидно, за счет диффузии к катоду этому процессу, может быть, способствует электрический ветер. В положительном столбе реакция имеет явно цепной характер. Она ускоряется при разбавлении смеси инертными газами, замедляется при уменьшении диаметра сосуда при постоянном расстоянии между электродами, ускоряется при повышении давления и температуры. Выход реакции на электрон весьма велик. При соответствующих условиях, таким образом, можно вызвать воспламенение. Хотя эти обстоятельства легко понять с общей кинетической точки зрения, однако подвергнуть детальному анализу различные соотношения между скоростью реакции или давлением воспламенения и величиной тока, разностью потенциалов, температурой и т. д. очень затруднительно. Поэтому в настоящее время опыты с тлеющим разрядом не могут способствовать расширению [c.124]

    Принцип кинетической независимости простых реакций - отдельные простые реакции, составляющие сложную реакцию, протекают независимо друг от друга, так что кинетические функции (т.е. зависимости скорости простой реакции от концентраций и температуры) не изменяются при протекании в данной системе других реакций. Принцип независимости стадий сложной реакции обоснован тогда, когда отдельные реакции, выраженные в виде стехиометрических уравнений, соответствуют элементарным актам химического превращения, т.е. стехиометрическая схема правильно отражает истинный механизм сложной реакции. Принцип независимости простых реакций применим для большинства типов сложных реакций (параллельных, последовательных, цепных). Для сложных реакций, в которых одни простые реакции существенно влияют на протекание других, например - сопряженных реакций, принцип независимости неприменим. Принцип независимости стадий сложной химической реакции соблюдается лишь в термически-равновесном газе, когда имеет место максвелл-бол ьцмановское распределение по всем степеням свободы реагентов. При резком воздействии на газ - в ударных волнах и гиперзвуковых потоках, электрических разрядах, при горении и взрывах, в газовых лазерах, при лазерном и ином мощном световом воздействии -возможно заметное нарушение термического равновесия. Это приводит к [c.164]


    Возможность одноэлектронной стадии в ходе ароматического замещения теоретически обоснована в работах Нагакуры с сотр. [58]. Шейн и сотр. [59] показали, что замещение галогенов, нитро-и алкокси-групп в ряду ароматических нитросоединений сопровождается образованием анион-радикалов субстрата. Предполагаемые авторами превращения анион-радикалов АгХ " далеко не бесспорны, однако не вызывает сомнений сам факт их первоначального образования. То обстоятельство, что а-комплекс Мейзенгеймера образуется с участием парамагнитных частиц, следует, например, из данных по химической поляризации протонов в стабильном а-комплексе тринитробензола и бис-ацетонилртути [60]. Вопрос о возможности цепного ион-радикального механизма нуклеофильного ароматического замещения пока следует считать открытым [61, 62]. Представления об одноэлектронном переносе как элементарном акте прямого гидроксилирования ароматических соединений развиты Блюменфельдом и сотр. [63]. [c.32]


Смотреть страницы где упоминается термин Цепной механизм химических превращений и его элементарные стадии: [c.513]   
Смотреть главы в:

Курс химической кинетики -> Цепной механизм химических превращений и его элементарные стадии

Курс химической кинетики -> Цепной механизм химических превращений и его элементарные стадии




ПОИСК





Смотрите так же термины и статьи:

Превращения химические

Стадия превращения

Химическая механизм

Химические цепные

Химические элементарные

Элементарный акт химического превращения



© 2025 chem21.info Реклама на сайте