Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стадия превращения

    Первую стадию проводили раньше с твердой щелочью в аппаратах со скребковыми мешалками. В дальнейшем было найдено, что при 160—200 °С и 1,2—1,5 МПа оксид углерода хорошо реагирует с 25—30%-ной щелочью в более простых аппаратах барботажного типа. Полученный раствор формиата натрия упаривают и выделя-KIT сухую соль. Вторая стадия — превращение солн в муравьиную кислоту — осложняется возможностью разложения последней под действием концентрированной серной кислоты  [c.546]


    К.Ф. Родионова и С.П. Максимов [23] отмечают, что структуры УВ, унаследованные от исходного органического материала на ранних стадиях диагенеза, сохраняются и на более поздних стадиях превращенное ти ОВ. Сохраняется характерное для сапропелевого (максимум в облас- [c.29]

    Давайте проследим все стадии превращения энергии в фене для сушки волос и в автомобиле. [c.199]

    Хотя устройства, превращающие один вид энергии в другой, несомненно, повысили потребительские свойства нефти и других видов топлива, некоторые из них породили и свои проблемы. Очень часто превращение энергии сопровождается загрязнением окружающей среды. В более общем виде это значит, что определенное количество энергии теряется на стадии превращения. Иначе говоря, эффективность превращения энергии никогда не бывает абсолютной, некоторое ее количество всегда пропадает, не совершая полезной работы. Например, рассмотрим потери в автомобиле, приняв, что в исходном бензине содержится 100 единиц энергии (рис. III. 16). [c.201]

    Разработка способов управления скоростями этих реакций должна служить теоретическим фундаментом для создания новых и усовершенствования известных процессов переработки твердых горючих ископаемых, смол, нефтей и нефтепродуктов. Очевидно, что управление этими реакциями и поиски важнейшего инструмента такого управления — катализаторов — немыслимы, без точных и. детальных знаний химии и элементарных стадий превращения компонентов сырья в условиях различных гидрогенизационных процессов. [c.97]

    Хотя описанная схема удовлетворительно объясняет причины разнообразия обнаруживаемых в природе форм нативных нефтяных ВМС и позволяет прогнозировать пх общие характеристики (макроструктуру и связанные с ней свойства, среднюю ароматичность и отдельные особенности фрагментного состава) по геохимическим данным и физико-химическим свойствам нефти, она отражает лишь самый общий характер п общую последовательность возможных превращений сложнейших компонентов нефти. Многие стороны и тонкие детали этих процессов (кинетические характеристики, количественные соотношения структурных фрагментов на разных стадиях превращений и т. д.) пока остаются не выясненными, и их познание требует выполнения огромной исследовательской работы но накоплению и творческому осмысливанию новых экспериментальных данных. [c.202]

    Гидрирование насыщенных альдегидов имеет практическое зна-ч< ние для производства тех первичных спиртов, которые не могут быть получены более экономичными методами. Это относится главным образом к н-пропиловому, н-бутиловому, изобутиловому и некоторым высшим первичным спиртам, когда гидрирование является завершающей стадией превращения в спирты альдегидов, получаемых оксосинтезом из олефииов, СО и Нг  [c.502]

    Для осуществления эндотермической реакции диссоциации метанола используется трубчатый реактор (рис. 2). Температура реакции 275—350 °С сырьем является парообразный метанол, содержащий достаточное количество водяного пара для превращения монооксида углерода в диоксид и сдвига равновесия реакции. В результате отмывки диоксида углерода в скруббере с алкиламином получается весьма чистый водород. Когда оборудование перестраивалось для целей мирного времени, в схему процесса была добавлена стадия превращения остаточного монооксида углерода в метан, который, как уже говорилось, безвреден для большинства процессов гидрирования. [c.150]


    Подвергают внешнему осмотру получаемый коксовый остаток, что позволяет судить о стадиях превращения угля в коксовой печи. [c.58]

    Таким образом, смола в процессе окисления является как бы промежуточной стадией превращения углеводородов в асфальтены. На всех стадиях окисления асфальтены характеризуются удивительным постоянством состава величина отношения. С/Н в случае крекинг-сырья составляет - 13, а содержание серы и кислорода (в сумме) приблизительно равно 4—4,5%, а в случае гудрона— соответственно 10—10,5 и 5—6%. Близки по своему составу и смолы на разных стадиях окисления. Приведенные выше цифры несколько меняются в зависимости от исходного сырья, но закономерность сохраняется. [c.134]

    Энергетические уровни — точки А, Б, В — характеризуют то наименьшее количество энергии, которым должны обладать кристаллиты исходных и промежуточных продуктов (турбостратная структура), чтобы при столкновении друг с другом они прореагировали. Разности между уровнями А и К (Е), Б и О (Е1) и В и Т (Ег) характеризуют кажущуюся энергию активации процессов прокаливания углерода, необходимую для перехода на предкристаллизационную стадию и требующую дополнительного подвода к системе энергии (ДЯ), и графитации, сопровождающейся выделением энергии (ДЯа). Наибольшей энергии активации (Ег) требует стадия превращения промежуточных форм углерода в графит. В результате охлаждения системы на каждой стадии происходит сброс энергии и система переходит на более низкий энергетический уровень (. - -0, Б->Т, В- -Г). [c.188]

    Такая же реакция является первой стадией превращения п-толуолсульфохлорида в толуол-2,4-дисульфокислоту [636]. [c.325]

    Каменные угли представляют собой следующую после бурых углей стадию превращения исходного растительного материала. Они отличаются от бурых углей большей твердостью, повышенной теплотой сгорания, пониженным выходом летучих веществ (9—45%) и невысокой рабочей влажностью (4—15%) а также пониженным содержанием водорода и кислорода при повышенном содержании углерода. По технологическому признаку каменные угли подразделяют на следующие марки длиннопламенные (Д), газовые (Г), жирные (Ж), коксовые (К), отощенные спекающиеся (ОС), слабоспекающиеся (СС) и тощие (Т). В некоторых бассейнах выделяют также угли газовые жирные (ГЖ), коксовые жирные (КЖ) и коксовые (К2), Угли названных марок различаются по выходу летучих (V), содержанию золы (А) и другим показателям. [c.66]

    Кислород. Углеводороды нефтепродуктов окисляются кислородом воздуха, растворенным в жидкой фазе. При низкой температуре окружающей среды автоокисление протекает в диффузионной области, когда скорость окисления практически не зависит от температуры и степени превращения углеводородов [1]. С повышением температуры возникают осложнения диффузионного характера, влияющие не только на скорость окисления, но и на степень превращения продуктов реакции. При этом процесс автоокисления переходит постепенно в кинетическую область, когда скорость процесса на всех стадиях превращения определяется прежде всего температурой. [c.208]

    На неглубоких стадиях превращения, пока относительное изменение концентрации мономера и инициатора, а следовательно, н п невелико [c.361]

    Любой катализатор активно взаимодействует с исходными реагентами, но его участие в процессе ограничивается только начальными стадиями превращений. В последующих стадиях он полностью регенерируется и может вновь взаимодействовать с молекулами реагирующих веществ. Этим и объясняется, что небольшого количества катализатора достаточно для получения очень больших количеств конечного продукта реакции. Факт снижения энергии активации химической реакции за счет образования промежуточных систем с участием катализатора является несомненным. Однако характер самого взаимодействия с катализатором может быть самым разнообразным. [c.214]

    Для начальных стадий превращения можно принять концентрации мономеров [А] и [В] величинами постоянными и считать 4А] и 4В] концентрациями мономерных звеньев в сополимере. [c.241]

    Антрациты не являются последней стадией превращения гумитов. Предполагается, что при подходящих условиях они могут превратиться в графит. Известны и переходные формы между тощими каменными углями и антрацитами, называемые полуантра-цитами. Самые зрелые в химическом отношении антрациты называются суперантрацитами или графитистыми антрацитами (плотность 1,75—1,90). Переходной формой между суперантрацитами и графитом является шунгит, который обнаружен на берегу Онежского озера у деревни Шунга в СССР, плотность его колеблется в пределах 1,84—1,98. По внешнему виду шунгит трудно отличить от антрацита. [c.64]

    Таким образом, в нефтях начальных стадий превращения преобладают еще недостаточно разукрупненные молекулы, содержание Hie простейших форм нафтенов и нормальных метановых углеводородов совсем незначительно. Это позволяет думать, что более простые углеводороды происходят из более сложных, как в ряду нафтенов, так и в метановом. [c.47]

    В заключение нужно коснуться еще вопроса о керогенных породах, или горючих сланцах. Это, по нашему мнению, недоразвившиеся до образования природной нефти породы. Если бы они были развиты в областях погружения в переслаивании с песками и могли попасть в зоны высокого давления, органическое вещество в них, по всей вероятности, превратилось бы в нефть. В некоторых из них процесс битуминизации не успел еще начаться, как они уже были выведены из сферы биохимических и химических процессов поднятием со дна моря. Таким примером являются куккерские сланцы В них синезеленая водоросль со времени нижнего силура сохранилась почти неизмененной. На покровном стеклышке в капле воды или хлоралгидрата она набухает и развертывается, как живая. В волжских сланцах процесс битуминизации уже начался, часть органогенного вещества уже перешла в битум, на этой стадии превращение остановилось, между тем как те же слои верхней юры, погребенные под меловыми отложениями в Эмбенском районе, дали нефть. В Майкопском нефтяном месторождении ниже основных нефтяных залежей, среди свиты фораминиферовых слоев, залегает пласт сильно битуминозной глины с рассеянными по всему пласту капельками иефти. Когда некоторые скважины, достигали этого пласта, в забое скоплялось даже небольшое количество свободной нефти. Если бы его перекрывал или подстилал пористый пласт, мы имели бы нефтеносный горизонт с промышленным скоплением нефти, а сейчас — это только пласт с диффузно рассеянной нефтью. Обращает на себя внимание исключительная нефтеносность майкопских глин в Хадыженском месторождении. Здесь глины настолько насыщены нефтью, что достаточно тончайших песчаных прослоев и смятия среди них, чтобы образовались скопления нефти, дающие хотя небольшие, но довольно постоянные притоки. И здесь, будь среди этих глин хорошие коллекторы, мы имели бы месторождение с большими запасами нефти, теперь рассеянной по всей толще [c.349]


    Смолистые вещества, согласно этому взгляду, есть, так сказать, еще недоработанная нефть, или растворимые остатки нефтематеринского вещества. Многие неясные вопросы решаются в общем плане с принятием этой точки зрения достаточно просто. Присутствующие в нефти гетерогенные соединения, кислородсодержащие ароматические углеводороды, гибридные формы углеводородов являются продуктами ранних стадий превращения органического вещества, а высокие удельные веса нефтяных фракций, рапным образом и оптическая деятельность, свидетельствуют о неполной завершенности процессов превращения органического вещества. Высокомолекулярные соединения смолистых веществ в ходе процессов разукрупнения молекул образуют углеводородные вещества циклической структуры, переходящие из высших фракций в средние и низшие, вследствие чего бензиновые и керосиновые фракции тяжелых нефтей имеют высокие удельные веса. Таким образом, эта характеристика фракций непосредственно связана с природой смолистых веществ. Принцип наименьшего изменения молекул не позволяет думать, что разукрупнение молекул смолистых веществ сразу дает только удельно легкие осколки, которые могли бы образовать фракции с теми низкими удельными весами, которые характерны для нефтей значительного нревращения. [c.158]

    Производство кристаллической глюкозы включает три основных стадии превращение крахмала в глюкозу (1 идролиз) очистка и концентрирование гидролизатов выделение глюкозы в виде кристаллов. Обратный осмос и ультрафильтрация перспективны в глюкозном производстве на стадии очистки и концентрироваиия продуктов гидролиза для получения глюкозы с заданным ОЕ. Так, путем подбора мембран удалось разделить глю озпый 1Сироп на фракции с > = 80- 85% и ОЕ= Ъ— 43%. [c.292]

    Если исходить из совершенно неправдоподобного допущения, что углеводороды нефти сразу, непосредственно возникают из погребенного органического вещества, минуя всевозможные промежуточные стадии, превращение нефти ограничивается переходом одних углеводородов в другие. Сюда же нужно включить не только изменение распределения и соотношения классов углеводородов, но и изменения молекулярного веса, т. е. образование низкомолекулярпых углеводородов из высокомолекулярных. Такое допущение находится в настолько полном противоречии с основными химическими законами, что о нем невозможно говорить даже в предположительной форме. [c.210]

Рис. 111.14. Некоторые из стадий превращения энергии в автомоби.ие Рис. 111.14. Некоторые из стадий превращения энергии в автомоби.ие
    Большинство американских геологов рассматривают биохимические процессы до погребения органического материала как стадию превращения, завершающуюся созданием вещества с низким содержанием Кислорода и переводом органического материала в следующую керогенпую стадию. Ограниченное получение нефти путем вытяжки растворителями по сравнению с тем количеством, которое может быть извлечено после нагревания ке-рогепной породы, по-видимому, показывает, что при этом произошло химическое изменение, при котором кероген превратился в нефть. Обычная же нерастворимость указывает на отсутствие свободной нефти в большинстве керогенных пород. Согласно этому взгляду, пефть является продуктом постепенного изменения керо-гепового вещества сланцев, которое само не является нефтью. Оно может сделаться пефтенодобным веществом либо при нагревании (перегонка всякого рода горючих сланцев), либо при высоком давлении. [c.341]

    Описанная схема удовлетворительно объясняет причины пара-генетичности нефтяных углеводородов и СС, по крайней мере для катагенной стадии превращения нефтей, и позволяет прогнозировать особенности состава сернистых компонентов нефти по ее геолого-геохимическим Характеристикам. [c.77]

    Более полная информация о способах реализации процесса может, быть получена при анализе свойств смеси и отдельных составляющих ее смесей меньшей размерности. Рассмотрим качественно это применительно к стадии выделения целевых продуктов. Обычно смесь, поступающая на разделение, является продуктом химического превращения (это особенно характерно для химических производств) и наряду с целевыми компонентами может содержать исходные реагенты и побочные продукты. При невысокой степени превращения исходные реагенты желательно выделить и возвратить на стадию превращения. Они, таким образом, становятся также целевыми продуктами стадии выделения. Что касается побочных продуктов реакций, то последние, особенно при больших мощностях производства, также могут представлять товарную ценность. Даже не будучи таковыми, они часто должны подвергаться последующей обработке исходя из требований охраны окружающей среды. Следовательно, смесь, поступающая на разделение, может содержать различные по агрегатному состоянию (газообразные или жидкие), по важности (целевые или побочные) и по требованиям на качество продукты. Однако все они составляют единую смесь, свойства которой определяются как свойствами отдельных компонентов, так и степенью их взаимодей-отвия. При наличии неконденсирующихся компонентов (критическая температура которых ниже температуры смеси) возникает вопрос о целесообразности изменения условий или выделения газовой и жидкой фаз на первом этапе разделения. [c.96]

    Обычно смесь, поступающая на разделение, является продуктом химического превращения (это особенно характерно для химических производств) и наряду с целевыми компонентами может содержать исходные реагенты и побочные продукты. При невысокой степени превращения исходные реагенты желательно выделить и возвратить на стадию превращения. Они, таким образом, становятся также целевыми продуктами стадии вьщеления. Что касается побочных продуктов реакций, то последние, особенно при больших мощностях производства, также могут представлять товарную ценность. Даже не будучи таковыми, они часто должны подвергаться последующей обработке исходя из фебований охраны окружающей среды. Следовательно, смесь, поступающая на разделение, может содержать продукты, различные по афегатному состоянию (газообразные или жидкие), [c.38]

    Промотирование алюмосиликатного катализатора металлами может быть объяснено карбоний-ионной теорией, хорошо описывающей основные закономерности процесса каталитического крекинга [252]. В соответствии с положениями этой теории, непредельные углеводороды в присутствии алюмосиликатного катализатора легко образуют карбонпй-ион и претерпевают быстрое дальнейшее превращение. Однако первая стадия превращения парафиновых и нафтеновых у1 леводородов — образование карбоний- [c.174]

    Кинетика процесса гидрогеиолиза моносахаридов через стадию превращения их в высшие полиолы рассмотрена в разд. 4.3.1 по работам Н. А. Васюниной, Е. Ф. Стефогло и А. Ермаковой [63, 84] моделирование реактора для такого процесса выполнено этими же авторами [20]. Было установлено, что оптимальное время пребывания (время прохода, время контакта) составляет для гидрогеиолиза сорбита без добавления гомогенного сокатализатора 90 мин. Показано, что для диаметра зерна катализатора 0,1 мм и соотношения скоростей газа и жидкости 10—15 устойчивый транспортный режим достигается при скорости жидкости 3 см/с. [c.138]

    Основными параметрами в классификации Стадникова являются характер исходного материала и стадия превращения, т. е. химическая зрелость различных углей. В этом отношении эта классификация значительно лучше, предложенных Потонье и Фуксом. Стадников предполагает, что кроме чисто сапропелитовых углей (класс I), которые произошли только из низших организмов, и чисто гумусовых углей (класс И), которые ведут начало от высших растений, в природе существуют и смешанные по происхождению и составу угли. В одних из них количественно пре- [c.56]

    Стадии превращения Класс I — сапропелитовые угли Класс II-гумусовые угли Класс III-сапропелито-гумусовые угли Класс IV— Гумусовосапропелитовые угли [c.56]

    В.М.Власенко [ ] считает, что со в присутствии водорода не адсорбируется на поверхности никеля. Следовательно, различные стадии превращения СО протекают либо в объеме, либо на поверхности катализатора при очень иалой концентрации цромеяуточных соединений, т.е. при очень малой продолжительности жизни этих соединений в адсорбированной состоянии. Более вероятным является превращение фенольных комплексов, как и при гидрировании окиси углерода в метиленовые радикалы Сл , Поэтому предложена слудупцая схема механизма гидрирования двуокиси углерода  [c.201]

    В процессе гидрокрекинга на алюмосиликатплатиновом катализаторе происходит превращение н-парафиновых углеводородов в изопарафиновые, малоценных компонентов сырья — нафтеноароматических и полициклических нафтеновых и ароматических углеводородов — в более ценные высокоиндексные компоненты. Последнее подтверждено соответствующими расчетами, показывающими стадии превращения исходных углеводородов (% масс.)  [c.287]

    Можно себе представить, что начальные стадии превращения сапропеля состоят в отщеплении углекислоты и воды за счет разрушения карбонильных и гидроксильных групп. Однако, возможно, что на последних стадиях превращения, когда практически удалены все гид1)оксилы в виде воды, отщепление углекислоты приобретает преобладающее значение. Например, в случае разложения остатка С НздОд путем отщепления только углекислого газа получается  [c.197]

    Сложные гетероциклические соединения, многообразные формы веществ со смешанными функциями являются первичной формой превращения погребенного органического вещества. Часть смолистых веществ нефти является примером подобного рода соединений. Они, с одной стороны, превращаются в более простые углеводородные, сперва также очень сложные соединения, с другой — переходят в результате диспропорционирования водорода в еще более сложные нолициклические соединения, являющиеся, так сказать, отходами нефтеобразовательного процесса. С химической точки зрения одинаково невозможно представить себе ни прямое превращение погребенного органического вещества в углеводороды, ни образование при этом метановых углеводородов. Последние знаменуют собой не начальные, а конечные стадии превращения, предшествующие окончательной гибели нефти и преврахцению ее в метан и графит. Иной порядок превращения исходного материала в нефть, т. е. переход от простейших метановых углеводородов в сложные нолициклические системы химически невозможен в условиях нефтеобразовательного процесса. < [c.203]

    Первая стадии превращения, т. е. восстановление эфиров в спирты, осуществлялась при пол[ощи Ь1А1Ы4. Такой метод восстаноиления эфиров нефтяных кислот осуществлен впервые. Выход был почтн количественный. Свойства полученных углеводородов (инфракрасные н ультрафиолетовые спектры, Ид и др.) напоминают свойства углеводородов масляной фракции, из которой были выделены нефтяные кислоты. Полученные из нефтяных кислот углеиодороды характеризуются групповым составом (приведены в табл. 55). [c.241]

    II Стадия — превращение в метан окислов, образовавшихся на первой стадии, т. е. процесс, обратный сгоранию метана (весь связанный в первой стадии кислород высвобождается), Очевидно, что тепловой эффект этой стадии равен теплоте сгорания метана, рзятой с обратным знаком, [c.55]


Смотреть страницы где упоминается термин Стадия превращения: [c.348]    [c.42]    [c.275]    [c.356]    [c.341]    [c.371]    [c.369]    [c.472]    [c.203]    [c.46]    [c.128]    [c.196]    [c.144]   
Теория рециркуляции и повышение оптимальности химических процессов (1970) -- [ c.218 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимопревращаемость энергии связывания и энергии активации стадии химического превращения субстрата

Изомерные превращения как промежуточная стадия химических процессов

Изучение различных стадий каталитических превращений органических веществ в атмосфере паров воды на никеле. Т. А. Словохотова, А. А. Баландин, Т. И. Полетаева, М. Праг, С. А. Балашова

Катализаторы, кинетика и механизм превращения изопентана (первая стадия)

Основные показатели стадии химического превращения

Превращение органических веществ на стадии катагенеза и метагенеза

Превращение сырья и аппаратурное оформление химических стадий процессов Технологические особенности реакционной аппаратуры

Превращения вещества в стадии накопления

Промежуточные стадии превращения алкилгидроперекисей

Радикальная полимеризация иа глубоких стадиях превращения

Расщепление через стадию образования диастереомеров. Асимметрические превращения второго рода

Стадии литогенеза и первичные превращения природных органических соединений на стадии садиментогенеза и диагенеза

Стадии превращения органических веществ

Степень превращения и лимитирующая стадия процесса

Цепной механизм химических превращений и его элементарные стадии



© 2025 chem21.info Реклама на сайте