Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение рентгеновского излучения для исследований структуры веществ

    Применение рентгеновского излучения для исследования кристаллических веществ основано на том, что его длина волны сопоставима с расстоянием между упорядоченно расположенными атомами в решетке кристаллов, которая для него является естественной дифракционной решеткой. Сущность рентгеновских методов анализа как раз и заключается в изучении дифракционной картины, получаемой при отражении рентгеновских лучей атомными плоскостями в структуре кристаллов. [c.71]


    Спектроскопия фотоэлектронов зародилась по существу еще в 20-х годах, когда в 1914 г. Робинсон в Англии и в 1921 г. М. де Бройль во Франции провели первые исследования энергетического спектра электронов, выбиваемых из атомов различных элементов рентгеновским излучением. Однако только в последние 10—15 лет в связи с появлением аппаратуры с очень высоким разрешением метод реально стал одним из важных разделов спектроскопии. Особенно ценны заслуги в этом шведской группы физиков, возглавляемой К. Зигбаном. Они назвали свой метод ЭСХА — Электронная спектроскопия для химического анализа . Уже само название разработанного ими метода свидетельствует о том, что новый физический метод предназначается в основном для различных химических исследований. Этот метод бесспорно может быть использован для изучения целого ряда химических процессов, в частности процессов, происходящих на поверхностях (окисление, катализ, адсорбция и т. д.), но главное его достоинство состоит в том, что он позволяет изучать электронную структуру вещества. Фотоэлектронная спектроскопия (ФЭС) может быть по праву названа экспериментальной квантовой химией . Применение наряду с квантово-механическими расчетами электронного строения молекул спектроскопии фотоэлектронов, несомненно, будет способствовать развитию ряда направлений современной структурной химии. [c.5]

    Дифракционные методы. В дифракционных методах исследования рентгеновское излучение, поток электронов или нейтронов взаимодействуют с атомами в молекулах, жидкостях или кристаллах. При этом исследуемое вешество играет роль дифракционной решетки. А длина волны рентгеновских квантов, электронов и нейтронов должна быть соизмерима с межатомными расстояниями в молекулах или между частицами в жидкостях и твердых телах. Сама же дифракция (закономерное чередование максимумов и минимумов) представляет собой результат интерференции волн. Она зависит от химического и кристаллохимического строения, следовательно, соответствует структуре исследуемого вещества. Поэтому есть принципиальная возможность для решения обратной задачи дифракции, т. е. установление структуры вещества по его дифракционной картине. Обратная задача дифракции для рентгеновского излучения, дифрагирующего в конденсированных средах, называется рентгеноструктурным анализом. Методы применения электронных и нейтронных пучков вместо рентгеновского излучения называются электронографией и нейтронографией соответственно. Общим для этих методов является анализ углового распределения интенсивности рассеянного рентгеновского излучения, нейтронов и электронов в результате взаимодействия с веществом. Но природа рассеяния рентгеновских квантов, нейтронов и электронов не одинакова. Рентгеновское излучение рассеивается электронами атомов, входящими в состав вещества. Нейтроны же рассеиваются атомными ядрами а электроны — электрическим полем ядер и электронных оболочек атомов. Интенсивность рассеяния электронов пропорциональна электростатическому потенциалу атомов. [c.195]


    Электронография нашла широкое применение в исследованиях структуры высокомолекулярных природных и синтетических органических веществ. Ввиду того что длина волн электронных лучей почти в 25 раз меньше длины волн рентгеиовских лу чей, условия диффракции электронного и рентгеновского излучения существенно различны. Поэтому изучение электронограмм дополняет, а не заменяет данные рентгенографии. [c.89]

    На практике изучают спектры поглощения электромагнитного излучения с частотами, близкими к частотам колебаний атомов, — инфракрасный (ИК) диапазон (10—10000 сМ ), спектры неупругого (с рождением или уничтожением фонона) рассеяния электромагнитного излучения видимого или ультрафиолетового (УФ) диапазона (комбинационное, или рамановское, рассеяние), рентгеновского излучения или тепловых нейтронов. Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния (КР) позволяют достичь максимального разрешения по энергиям, но из-за малого волнового числа первичного излучения дают информацию (если пренебречь многофононными эффектами, имеющими весьма малую интенсивность) только о колебательных состояниях вблизи центра зоны Бриллюэна (оптическим модам при квазиимпульсе, равном нулю). Кроме этого ограничения в обоих методах существуют правила отбора по симметрии ё спектрах поглощения (ИК спектрах) наблюдаются колебательные моды, характеризующиеся изменением дипольного момента, а в спектрах КР — колебания, при которых изменяется квадрупольный момент. Таким образом, эти две методики дополняют друг друга, и для получения более полной информации о колебательном спектре изучаемого вещества желательно иметь оба спектра. В то же время часть колебаний оказывается неактивной ни в ИК спектрах, ни в спектрах КР (так называемые немые моды). Применение для исследования колебательной структуры твердых тел неупругого рассеяния нейтронов лишено всех упомянутых выше ограничений, но в значительной степени ограничено существенно меньшим разрешением и необходимостью много большего количества вещества для проведения эксперимента. Так, спектры неупругого рассеяния нейтронов на различные углы позволяют, в принципе, определить дисперсионные кривые для всех колебательных мод. Однако низкое разрешение приводит к тому, что подобный анализ возможен лишь для относительно простых систем, а в большинстве случаев возможно рассмотрение только усредненного по всей зоне Бриллюэна суммарного спектра всех колебательных мод. [c.272]

    Получить информацию о размерах, форме и взаимном расположении частиц в веществе размером в десятки нанометров возможно применением малоуглового рассеивания рентгеновских лучей (в диапазоне углов от нескольких минут до одного-двух градусов при использовании излучения с длиной волны 0,1—0,2 нм). Исследования, проведенные в микродифракционном режиме, позволили получить микроэлектронограм ы практически с индивидуальных кристаллитов асфальтенов [325]. Это дает возможность более корректно определить размеры организованной кристаллоподобной структуры. [c.157]


Смотреть страницы где упоминается термин Применение рентгеновского излучения для исследований структуры веществ: [c.21]    [c.463]   
Смотреть главы в:

Анорганикум. Т.1 -> Применение рентгеновского излучения для исследований структуры веществ




ПОИСК





Смотрите так же термины и статьи:

Излучение вещества

Рентгеновские применения

Рентгеновское излучение

Рентгеновское исследование



© 2025 chem21.info Реклама на сайте