Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронная структура аморфных веществ

    На первый взгляд парадоксально, что ненаправленные связи направляют отвердевание вещества по пути образования симметричных плотных структур, отличающихся высокой степенью упорядоченности, тогда как направленная связь толкает этот процесс в сторону образования аморфных веществ, которые выглядят как максимально разупорядоченные вещества. В самом деле, благодаря ковалентной составляющей связи атомы соединяются друг с другом в определенном порядке и в определенных положениях по отношению друг к другу, притом в одних и тех же, при одних и тех же условиях отвердевания. Пространственные конфигурации электронной волновой функции определяют взаимное расположение и порядок соединения атомов. Аморфные вещества вовсе не следует рассматривать как бесструктурные. Это вещества, обладающие крайне сложным, запутанным строением. Если для одного и того же состава вещества число вариантов кристаллической структуры весьма ограничено, число вариантов непериодической структуры для такого вещества бесчисленно велико. Примитивность кристаллических и сложность непериодических структур указывает на резкое различие творческих возможностей соответствующих структурообразующих факторов. [c.161]


    В то же время на основании рентгеновских исследований можно было сделать вывод о том, что в аморфных полимерах (как, впрочем, в обычных жидкостях и других аморфных веществах) имеются области ближнего порядка, в которых на расстоянии в 10—15 А от любой точки сохраняется однотипная пространственная упорядоченность. Еще в 1948 г. Алфрей [25] писал о том, что в аморфных полимерах должны быть упорядоченные области. Однако впервые вопрос об упорядоченном расположении цепей в аморфных полимерах поставили Каргин, Китайгородский и Слонимский [26]. В 1957 г. ими была предложена модель структуры аморфного полимера. Согласно этой модели возможны две формы надмолекулярной организации в аморфном полимере. Аморфные полимеры могут состоять либо из глобул, образованных свернутыми полимерными молекулами, либо из развернутых цепей, собранных в пачки (рис. 29). Предполагалось, что длина пачки много больше длины входящих в нее макромолекул. Далее допускалось, что пачки могут обладать определенной гибкостью, и вследствие этого возможно разворачивание областей пачек, внутри которых цепи свернуты в спирали, или согласованные повороты около С—С-связей одного участка пачки относительно другого. Представление о таких кооперативных поворотах цепей внутри пачки хорошо коррелировало с результатами прямых исследований аморфных полимеров методами оптической и электронной микроскопии [27], в которых было обнаружено, что частички некоторых аморфных полимеров, полученных осаждением из раствора, имеют правильную геометрическую форму. [c.63]

    Вышеупомянутая диффракция пучка электронов, падающих с определенной скоростью на изучаемый объект, позволяет получать фотографии рассеянных электронных лучей или электронограммы, используемые для расшифровки многих деталей строения аморфных и кристаллических веществ, и без применения электронного микроскопа. Так как в отличие от рентгеновских лучей электроны могут проникать в изучаемый объект лишь на весьма незначительную глубину, то этот метод применяется только для исследования либо тонких пленок (окисные пленки на металлах), либо структуры кристаллических веществ, образующих тонкие чешуйки (минералы глин, слюды), либо изменений поверхностных слоев твердых материалов после химической или механической их обработки (шлифовка, полировка, наклеп металлов и т. п.). В СССР работы по изучению структуры окисных пленок на кристаллах железа, алюминия и других металлов провели Данков и Шишаков. Пинскер и его сотрудники применили электронографический анализ к изучению тонкой структуры каолинита, монтмориллонита и пирофиллита. [c.53]


    Обратим внимание на то, что аморфные вещества, как и кристаллы, имеют огромное количество близких состояний, между которыми, однако, как и в молекулах, существуют высокие потенциальные барьеры. Таким образом, электронные структуры аморфных веществ занимают промежуточное положение между электронными структурами кристалла и молекулы. [c.82]

    ЭЛЕКТРОННАЯ СТРУКТУРА АМОРФНЫХ ВЕЩЕСТВ [c.117]

    Строение остова отражается структурной формулой соответствующего соединения, которая устанавливается методами химического анализа, синтеза и путем всестороннего исследования свойств вещества. Исходя из структурной формулы, т. е. химического строения, по данным, характеризующим распределение электронной плотности по объему вещества, получаемым методом рентгеноструктурного анализа из интенсивности дифракционных лучей, может быть построена атомная модель любого кристаллического вещества. Как мы отмечали выше, по экспериментальным кривым углового распределения интенсивности можно также определять межатомные расстояния и координационные числа в структуре аморфных веществ. Этим путем, к сожалению, нельзя получать углы между связями, но они могут быть рассчитаны квантовомеханическими методами. Таким образом, оперируя экспериментальными и расчетными данными, можно построить атомарную модель твердого вещества как кристаллического, так и непериодического строения. Особенно интересно создание подобной модели для аморфных веществ, поскольку их структура ре может быть выражена кристаллической решеткой. Построение их модели облегчается наличием остова. [c.163]

    В начале 30-х годов Б. Уоррен применил этот метод для исследования структуры аморфных веществ сложного состава, ввел радиальные функции распределения электронной плотности, связанные с интенсивностью рассеяния уравнением [c.5]

    Несколько лет назад 3. Я. Берестнева и В. А, Каргин проделали очень убедительные эксперименты по электронографическому и электронно-микроскопическому исследованию процессов получения типичных лиофобных коллоидов. Было показано, что образованию кристаллических коллоидных частиц всегда предшествует выделение глобулярных и пленочных аморфных структур. Эти эксперименты могут быть истолкованы как доказательство того, что указанные системы, подчиняясь правилу фаз и соответственно законам равновесия смесей аморфных веществ (жидкостей), в определенных условиях распадаются на равновесные фазы, в которых лишь после этого совершается процесс дальнейшего превращения в кристаллические осадки. Подобное представление о механизме образования коллоидных золей может быть распространено и на случаи образования гелеобразных коллоидных систем из неорганических веществ. [c.23]

    В электронном микроскопе при увеличении до 30 тысяч раз структура мыльных смазок представляется в виде перепутанных и переплетенных нитей и лент, иногда скрученных между собой, образующих сетки, губки и спутанные клубки. Внутри этих сплетений находится иммобилизованная жидкая фаза — масло (рис. 100, см. вклейку). Дисперсные частицы мыл в зависимости от их химического состава и условий, в которых они образуются, могут приобретать различные формы и размеры. Но в подавляющем большинстве с.мазок, загущенных мылами, дисперсные частицы имеют форму сильно удлиненных лент и волокон. Исключением являются загущенные алюминиевыми мылами смазки, представляющие собой аморфные вещества. Дисперсные частицы в них очень малы и трудно различимы, поэтому им приписывают как форму сфер, так и нитей. [c.318]

    В монографиях [21, 22] показано, что как совокупность экспериментальных данных о строении и электрических свойствах жидкостей и стекол, так и теоретическое рассмотрение одно- и трехмерной модели жидкости, обладающей лишь ближним порядком, указывают на применимость зонной теории к аморфным телам. Развитый Губановым метод рассмотрения свойств электрона в аморфном теле с помощью деформированной системы координат позволил доказать существование зон в энергетическом спектре электрона и оценить их границы. Однако структура зон и детальный характер движения электрона еще не выяснены. Интересно, что для полимерных тел, состоящих из анизотропных молекул, применение зонной теории более обосновано, чем для низкомолекулярных аморфных веществ. Это обусловлено наличием дальнего порядка вдоль макромолекулы. [c.22]

    Рассмотрим подробнее строение самой пачки, сочетание которых в веществе и составляет структуру аморфного полимера [5]. Как показало изучение таких пачек в электронном микроскопе, размеры их намного длиннее самих цепных молекул полимера и, следовательно, это не есть образования из нескольких сложенных параллельно друг другу макромолекул. Указанный характер строения пачки показывает, что она может включать в себя много рядов цепей, в которых макромолекулы расположены последовательно относительно друг друга, причем концы молекул находятся в разных местах пачки. Схематическое изображение строения пачки дано на рис. 31. [c.159]


    Тесно связан с рентгенографией способ изучения структуры вещества с помощью электронных лучей. Явление дифракции электронов, проходящих сквозь кристалл, подобно явлению дифракции рентгеновских лучей, но электронные лучи взаимодействуют с атомами кристаллической решетки гораздо более энергично. Благодаря последнему обстоятельству уже при самой незначительной толщине кристаллического препарата электронные волны создают отчетливые дифракционные картины. Электронографический способ имеет определенное преимущество перед рентгенографическим, когда речь идет об изучении чрезвычайно тонких кристаллических слоев. Однако метод дифракции электронов еще не дал надежных результатов при исследовании структуры аморфных тел, хотя Н. А. Шишаков [6], получивший электронограммы кварцевого стекла рассматривает их как подтверждение кристаллитной теории и считает, что плавленый кварц состоит из деформированных кристалликов кристобалита. [c.78]

    Одно и то же твердое вещество в зависимости от условий синтеза может получаться в разных энергетических состояниях, каждому из которых соответствует своя структура. Твердое вещество может иметь в высшей степени большое число энергетических состояний. Поскольку межатомные расстояния и углы между связями могут изменяться в довольно широких пределах, в таких же пределах происходит изменение энергии связи и, следовательно, энергетического состояния вещества, которое зависит от энергии валентных электронов. Но изменение межатомных расстояний и угла между связями только для двух соседних атомов, находящихся в структуре твердого тела, влечет за собой некоторое изменение всех длин и углов связей, вообще некоторое изменение взаимного положения всех атомов данного твердого тела, и, следовательно, имеет своим конечным результатом образование видоизмененной структуры соответствующего вещества. Таким образом, существует в высшей степени большое количество вариантов структуры твердого вещества данного состава. В процессе кристаллизации обычно можно получить только довольно ограниченное число модификаций, отвечающих в данных условиях наиболее бедным энергией состоянием данного вещества. Отвердевание атомных соединений, ведущее к образованию аморфного вещества, в зависимости от условий, в которых оно протекает, позволяет получать то одни, то другие непериодические структуры. Очевидно, существует огромное количество аморфных твердых тел одинакового состава, но разного строения. Это обстоятельство обычно ускользает из поля зрения исследователей. Но более точное изучение строения различных стеклообразных веществ (таких как кварцевое стекло, халькоге-нидные стекла или органическое стекло), а также гелей показало, что несмотря на один и тот же состав отдельные образцы подобных веществ, полученные ири различных условиях, имеют различную структуру. Так, различна структура стекол, полученных при различных температурах и давлениях гели одного и того же состава часто имеют неодинаковую пористую структуру, например неодинаковое распределение по объему геля микро- и макропор ири постоянном соотношении объемов последних. Вообще, варьируя давление и температуру, можно получать твердые вещества одного и того же состава, но различной плотности и, следовательно, различного строения. Кварцевое стекло, полученное иод высоким давлением, приближается по плотности к кварцу. Насколько далеко может заходить ири этом превращение вещества, видно из факта получения таких совершенно непохожих друг на друга модификаций кремнезема, как кварц, тридимит, кристобалит, а также стешовит. Расчеты показывают, что при определенных высоких [c.156]

    Те же самые принципы, которые справедливы для поверхности кристаллических веществ, сохраняют свое значение и для поверхности аморфных твердых тел. Кристаллы могут иметь чисто ионную структуру, как, например, НаР, или чисто ковалентную, как, например, алмаз. Однако большинство веществ находится где-то между этими двумя крайними случаями (даже в случае фторида лития путем точного определения распределения электронной плотности была показана [ ] возможность образования связи между катионом и анионом). Установлено, что в большинстве аморфных веществ преобладают ковалентные связи. Как и в жидкостях, в них обычно имеется некий ближний порядок, сходный с упорядочением в соответствующих кристаллических структурах. Очевидно, это [c.186]

    Непосредственным результатом рентгено-, электроне- и нейтронографических исследований жидкостей и аморфных тел является интерференционная картина. В случае одноатомных жидкостей и аморфных тел она несет информацию о ближнем порядке в расположении атомов. Картина рассеяния молекулярными жидкостями и аморфными телами отражает атомный состав молекул, их конфигурацию и взаимное расположение. Задача исследования состоит в том, чтобы по интерференционной картине воссоздать пространственную структуру вещества, установить связь между структурой и физическими свойствами. [c.47]

    Применение метода реплик вызвано необходимостью изучения объектов, не прозрачных для электронов. Метод заключается в том, что рельеф поверхности объекта воспроизводится с помощью тонкой пленки, которую затем исследуют в электронном микроскопе. Для того чтобы обеспечить необходимую контрастность изображения и достаточно высокую механическую прочность, реплики обычно делают из двух слоев напыленного под некоторым углом слоя металла, обеспечивающего контрастность, и несущей этот слой пленки из аморфного вещества с низкой плотностью, слабо рассеивающего электроны и обладающего высокой прочностью, химической стойкостью и стойкостью к воздействию электронного пучка. Пленка должна точно воспроизводить рельеф поверхности, на которую она напыляется, и не должна иметь собственной структуры, видимой в электронном микроскопе при выбранных условиях съемки. [c.71]

    Несмотря на то что дифракция электронов в принципе может быть использована для определения положения атома в любом из фазовых состояний вещества, однако для исследования структуры полимеров применение дифракции электронов до настоящего времени ограничивается только кристаллическими объектами. Такое ограничение вызывается трудностями в расчете кривых рассеяния электронов для аморфных полимеров. Именно поэтому в дальнейшем изложении будут рассмотрены основные принципы дифракции электронов на кристаллах. Теория дифракции будет дана лишь в ограниченном объеме, требуемом для понимания возможностей применения дифракции электронов к полимерным системам и для интерпретации дифракционных картин. Более детальное рассмотрение дифракции электронов можно найти в известных монографиях и обзорах [1]. [c.227]

    В лекции 1 был описан непористый неспецифический адсорбент— графитированная термическая сажа, важный для газовой хроматографии веществ, различающихся по геометрии молекул, в частности, структурных изомеров. Однако гранулы из частиц этого адсорбента непрочны, так что проницаемость колонны при большом перепаде давления газа-носителя может изменяться во времени. Кроме того, энергия неспецифического межмолекулярного взаимодействия молекул с ГТС из-за высокой концентрации атомов (углерода в графитовых слоях настолько велика, что для разделения, например, изомерных терфенилов (см. табл. 1.3), надо повышать температуру колонны с ГТС до 350°С и выше. Вместе с тем, будучи хорошим адсорбентом для разделения молекул с различной геометрической структурой, ГТС менее чувствительна к различиям электронной конфигурации молекул, наличию в них электрических и квадрупольных моментов. Гранулы специфических адсорбентов, состоящих из кристаллов солей, обладающих высокой селективностью по отношению к молекулам, различающимся по электронной конфигурации (см. рис. 2.1), также часто механически непрочны. Гранулы же силикагелей, силохромов и пористых стекол достаточно прочны, но это аморфные адсорбенты, и их поверхность в той или иной степени геометрически и химически неоднородна (см. рис. 3.3, 3.7 и 3.12). Кроме того, промышленные образцы этих адсорбентов часто содержат примеси, образующие при дегидратации поверхности сильные электроноакцепторные центры (см. раздел 3.12). [c.75]

    Основными компонентами соединительной ткани являются клеточные элементы и волокнистые структуры. Они погружены в основное вещество, которое в световом микроскопе кажется гомогенным (аморфное вещество), а в электронном представляется состоящим из тончайшей сети волоконец и мелких гранул (Серов В.В., Шехтер А.Б., 1981). Главными химическими компонентами основного вещества являются белки и полисахариды, образующие между собой комплексные соединения различной молекулярной структуры и прочности - протеогликаны и гликопротеины (Никитин В.Н., Пер-ский Е.Э., Утевская Л.А., 1977 Серов В.В., Шехтер А.Б., 1981). [c.22]

    Рентгенографические, электронографические и нейтронографические исследования атомной и молекулярной структур жидкостей и аморфных тел основываются на анализе углового распределения интенсивности рассеянного рентгеновского излучения, электронов и нейтронов. Рассеяние веществом этих трех видов излучений не одинаково, что объясняется различием их физической природы. Рентгеновское излучение рассеивается электронами атомов и молекул. Процесс рассеяния не характерен обычному отражению или преломлению. Рентгеновское излучение, взаимодействуя с электронами, приводит их в колебательное движение. Колеблясь с той же частотой, что и электрический вектор первичной электромагнитной волны, электроны порождают вторичное электромагнитное излучение, распространяющееся во всех направлениях. Интенсивность рассеянного излучения, фиксируемая в некоторой точке, пропорциональна электронной плотности атомов и молекул. [c.26]

    Электронная структура аморфных веществ, как и отдельных молекул, представляет собой набор дискретных уровней, разделенных высокими потенциальными барьерами. Близкие энергетические состояния валентных электронов разобщены, так как геометрия волноводов — неодинаковые длины и углы межатомных связей, обусловленные непериодичноотью структуры — препятствует распространению электронных волн за границы каждой данной межатомной связи. Но поскольку аморфные вещества, как и кристаллы, обладают множеством близких энергетических состояний валентных электронов, электронные энергетические спектры твердых тел непериодического строения похожи в некоторых отношениях на энергетические спектры кристаллов. < [c.99]

    Электронная структура аморфных атомных веществ представляет собой набор дискретных уровней, разделенных высокими потенциальными барьерами, что определяет локализованное состояние валентных электронов. Не-локализованное состояние электронов проявляется лишь при некоторой крити аеской величине кинетической энергии электрона, когда электрон может совершить термически активированный перескок от исходного локализованного состояния в соседнее локализованное состояние. Для типичных аморфных веществ, таких как кварцевое стекло, величина критической кинетической энергии настолько велика, что такой перескок невозможен и они практически не проводят ток. Аморфные вещества можно рассматривать как в высшей степени сложную совокупность многоатомных молекул и макромолекул, находящихся в твердом состоянии. [c.110]

    Световая микроскопия позволяет изучать крупнокристаллические образования (сферолиты, суперкристаллы ), а также крупные составные части сложных объектов, например, анатомические элементы древесины (см. 8.4.2 и [30]). Дополнительную информацию дают УФ-микро-скопия и микроскопия в поляризованном свете. Электронная микроскопия (см. 5.4.1) используется для изучения разнообразных элементов надмолекулярной структуры аморфных и кристаллических полимеров, а также ультраструктуры клеточных стенок древесины (см, 8,6.2), основным структурообразующим компонентом которых служит фибриллярный ориентированный аморфно-кристаллический полимер - целлюлоза. Особо важное значение при изучении кристаллического состояния полимеров и надмолекулярной структуры кристаллических полимеров приобрел такой прямой метод исследования стру1сгуры вещества, как рентгеноструктурный анализ (см. 5.4.2). Одним из ранних методов исследования клеточных стенок древесины и кристаллических полимеров является метод двойного лучепреломления, позволяющий изучать анизотропные среды. Для исследования кристалличности и ориентации полимеров особенно эффективны комбинации методов, в частности, рентгеноструктурного анализа и электронной микроскопии. [c.143]

    Для атомных соединений двум типам твердых веществ — кристаллическим и аморфным — отвечаютцва типа электронных структур энергетические состояния валентных электронов в структурах первого типа группируются в квазинепрерывные зоны, в структурах второго типа локализуются. И в том, и в другом случае каждое твердое тело имеет единую электронную структуру. [c.82]

    Цель книги — показать, как по картине рассеяния рентгеновского излучения, электронов и нейтронов определяется молекулярная структура веществ от простейших по составу до сложных биологических объектов обобщить результаты исследований строения молекул, структуры различных типов индивидуальных жидкостей, металлических расплавов, растворов электролитов и неэлектролитов, жидких кристаллов н аморфных веществ изложить теорию рассеяния рентгеновского излучения иод обычными и малыми углами, дифракции электронов и нейтронов, методику и технику эксперимепта, общие представления о природе химических связей и сил межмолекулярного взаимодействия. В основу книги положены лекционные курсы, читаемые для студентов Киевского ордена Ленина государственного университета имени Т. Г. Шевченко, специализирующихся по молекулярной физике, а также написанное автором учебное пособие Структурный анализ жидкостей (1971). [c.3]

    При относительно низких давлениях и температурах электрон-но-ядерное вещество конденсируется структура конденсата может быть периодической (чистые кристаллы) и непериодиче кой (жидкости, аморфные твердые тела, сплавы, соединения нестехио-метрического состава, полимеры). К числу непериодических структур принадлежат и белковые вещества. В некоторых случаях конденсат может обладать структурными свойствами, промежуточными между свойствами твердого кристалла и жидкости (жйдкие или мезоморфные кристаллы). [c.11]

    Структура состоит из цепей (рис. 2.73), соединенных между собой через атомы кислорода [159]. Каждый тетраэдр входит по крайней мере в одно из 5-членных колец каркаса. Высокая термостабильность морденита, вероятно, связана с большим числом энергетически стабильных 5-членных колец в его каркасе. Алюмосиликатный каркас морденита изображен на рис. 2.74. Для диффузии маленьких молекул в дегидратированном цеолите имеется двумерная система каналов, однако диффузия более крупных молекул может происходить только по системе параллельных одномерных каналов, которые, кроме того, могут блокироваться из-за нарушения кристаллической решетки или присутствия в них аморфного вещества или катионов. Дегидратированный морденит быстро адсорбирует такие газы, как азот и кислород, в то время как метан или этан адорбируются им медленно. Этот факт нельзя объяснить размерами каналов (диаметр которых равен 6,7 А). Поскольку большие каналы одномерны, то даже небольшого числа нарушений в них достаточно, чтобы ограничить адсорбционный процесс (рис. 2.75). Аналогичные результаты получены при изучении адсорбционных свойств гмелинита, у которого, как было показано методом дифракции электронов, большие каналы блокируются сдвигами кристаллической решетки. Однако в мордените подобные сдвиги не обнаружены [160]. [c.132]

    Малость длины дебройлевской волны для электрона означает большой радиус сферы Эвальда (см. стр. 268), ее вырождение в плоскость. Это сильно упрощает истолкование электро-нограмм, так как они оказываются прямыми изображениями плоского сечения обратной решетки кристалла. Атомные факторы для рассеяния электронов также пропорциональны атомному номеру, но по своей абсолютной величине они во много раз больше, чем для рентгеновских лучей. Иными словами, электроны взаимодействуют с веществом значительно сильнее, чем рентгеновские кванты. Поэтому они сильно поглощаются веществом, и для исследования его структуры необходимо пользоваться очень тонкими пленками толщиной порядка 10 —10 см, тогда как размеры кристаллов, изучаемых в рентгенографии, порядка 10 см. Исследование необходимо проводить в высоком вакууме. Это делает невозможным применение электронографии для изучения глобулярных белков в их нативном состоянии — вакуум высушит белок. Тем не менее электронография позволяет получить ценные результаты при исследовании фибриллярных белковых структур, синтетических полимеров и других аморфных тел. Существенное преимущество электронографии состоит в том, что она позволяет локализовать атомы водорода (подробное изложение см. в монографиях [31, 32]). [c.275]

    В работе [31] значительное внимание уделено изучению влияния условий получения коллоидных растворов и состава частиц на структуру последних (исходные компоненты, температура, содержание воды в осадке и т. п.). Обнаружена чувствительность ультрамикрокристаллов к условиям их зарождения и составу среды. Эти факторы отражались не только на размере, но и на форме частиц. В дальнейшем, используя новый в то время метод электронной микроскопии, был детально изучен сам процесс формирования таких частиц. Наиболее существенным результатом оказался обнаруженный В. А. Каргиным и 3. Я. Берестневой на примере коллоидного раствора пятиокиси ванадия (впоследствии и на других объектах) двухступенчатый характер процесса — вначале образуются глобулы аморфного вещества, которые впоследствии превращаются в кристаллы. В литературе встречались отдельные указания на присутствие в коллоидных растворах шарообразных (нуклеарных, как их называли) частиц [29]. Большой заслугой В. А. Каргина и 3. Я. Бе-рестиовой является то, что им впервые удалось, используя методы >ле-ктронографического и электронно-микроскопического анализов, проследить все стадии образования отдельной коллоидной частицы. На множестве объектов было показано, что образование частиц происходит через истинные расл воры, в которых при пересыщении образуются коллоид ные частицы, имеющие аморфную структуру и шарообразную форму. А затем, но мере старения золя, наблюдается. процесс кристалли.за-ции, начинающийся внутри частицы и постепенно всю ее захватывающий. [c.86]

    Интересные результаты были получены также Бунном, Коб-болдом и Пальмером [74] нри исследовашш кристаллического политетрафторэтилена. Этот полимер выделяется из ряда других своими необычными свойствами очень высокой точкой плавления (т. е. переходом первого рода кристалл — аморфное вещество), равной 330°, трудностью обработки выше точки плавления, очень низким коэффициентом трения. Также необычна и структура полимера, обнаруженная электронно-микроскопически (фото 91). Хотя реплика, полученная по двухступенчатому способу с применением прессования промежуточного полистиролового отпечатка, обладала относительно невысоким разрешением, все же на микрофотографии отчетливо видно, что структура полимера скорее напоминает структуру металла, чем сферолитное строение, столь характерное для кристаллических полимеров. В этом случае образец был получен медленным охлаждением блока, предварительно разогретого до 380°. [c.264]

    Следует полностью согласиться с мнением Уайкоффа о необходимости концентрировать усилия на развитии фундаментальных исследований, а не рассматривать их как предварительные или второстепенные по сравнению с прикладными. В последние годы в Англии Ментером и его последователями проводится серия работ по изучению кристаллических решеток ряда веществ. В меньшей стенени это относится к Японии, где, несмотря на ряд содержательных в научном и ценных в методическом отношениях работ, все же нет так ясно выкристаллизовавшихся принципиальных научных направлений. Весьма перспективными являются исследования кристаллических полимеров, проводимые в Англии и других странах. В СССР систематические исследования В. А. Каргина и сотрудников привели к созданию новых представлений о структуре аморфных полимеров. Есть все основания считать, что проводимое в настоящее время оснащение научно-исследовательских учреждений первоклассными приборами, освоение методики и возросший интерес к электронно-микросКопическим иссле дованиям приведут к быстрому качественному скачку этой области советской науки. На этой базе электронная микроскопия получит широкое применение при решении практических задач. [c.272]

    Заметное расширение интерференционных колец, получаемых по методу Дебая — Шеррера, происходит в том случае, если размеры частиц лежат между 0,5—0,2 ц. Расширение колец закономерно возрастает с дальнейшим уменьшением размера частиц, что и делает возможным определение их величины. Это имеет место в том случае, если речь идет о кристалликах с совершенно правильным расположением в них атомов. Не вполне упорядоченное расположение атомов, т. е. существование так называемых искажений решетки (см. т. II, гл. 1), может также привести к расширению интерференционных колец и в случае значительно более крупных кристалликов. Будет ли это происходить, зависит от характера искажений. Существуют и такие искажения, которые обусловливают не расширение, но только уменьшение интенсивностей интерференционных колец. Более подробно см. F г i к е, Z. Ele tro hem., 44, 29, 1938> Так как в твердых аморфных, а также в жидких и газообразных веществах атомы располагаются не совершенно неупорядоченно, а определенные межатомные расстояния встречаются чаще других, то и для таких веществ наблюдаются более или менее отчетливые максимумы в почернениях фотографической пленки. Из положений этих максимумов можно сделать заключение о строении молекул. Для исследования молекулярной структуры таких веществ, и прежде всего газов, в настоящее время служат не только рентгеновские лучи, но и электронные лучи, которые при прохождении через газы преломляются и испытывают интерференции таким же образом, как и рентгеновские лучи. [c.236]

    При сравнении спектров электронного поглощения аморфных Si, Ge, As, Se, AszSea и стекол со спектрами кристаллических веществ были выявлены значительные различия в интенсивностях поглощения, что указывает на особенности структуры этих веществ в аморфном и кристаллическом состоянии. [c.165]

    Углерод. Применение к углероду понятия аморфного состояния не вполне оправданно, поскольку различные сорта угля и технического углерода причисляют к аморфным веществам, хотя они поликристалличны и состоят из микрокристалликов а-С. Аморфные пленки, выделяемые из пара, включают области ближнего порядка а- и -С с преобладанием первого. Методом дифракции электронов в таком углероде были выявлены локальные области упорядочения размером около 1 нм со структурой а-С с нарушенной последовательностью слоев. Пленка аморфного углерода, как и кристалл, анизотропна значения [c.212]

    В аморфных веществах при этом наблюдаются обычные кинетические кривые второго порядка, и процесс рекомбинации, по-видимому, обусловлен простой диффузией. В кристаллических же веществах наблюдаются ступенчатые кривые рекомбинации — при каждой температуре концентрация спадает лишь до определенной, зависящей от этой температуры и от первоначальной концентрации, величины R (7 ) (см. стр. 171, рис. 82). Такие результаты были получены при облучении быстрыми электронами циклогексана и н-октилового спирта [20] и при облучении УФ светом замороженного водного раствора Н2О2 [21]. Для объяснения этих особенностей в работе [20] высказывается предположение о том, что они обусловлены неоднородностью структуры поликристаллических веществ, представляющих собой наборы областей разных размеров, характеризующихся различными значениями температур, соответствующих фазовым переходам того или иного типа. Неодинаковые режимы замораживания могут, естественно, приводить к различным распределениям таких областей в образце, что может обус.по- [c.199]

    Исследования металлических мыл касались главным образом их кристаллического строения, растворимости и фазовых свойств [4]. При этом особое внимание ряда исследователей привлекали алюминиевые мыла. Так, Майселс с сотрудниками [5] отмечали, что двузамещенные мыла типа А1(0Н) (ООС—Н)2 существуют в виде определенных химических образований, которые могут связывать дополнительно некоторое количество свободной жирной кислоты. Данные по дифракции рентгеновских лучей и электронной микроскопии указывают на существование разнообразных молекулярных структур этих веществ с почти непрерывным переходом от кристаллических к аморфным. Они набухают и растворяются в углеводородных растворителях, причем ведут себя как [c.26]

    Молекулы веществ, повышающих маслянистость, могут содержать не только полярные, но и неполярные группы. Так, углеводороды ряда СяНая или СпНгп+г могут образовывать на металлической поверхности слои ориентированных молекул, которые адсорбируются вследствие поляризации. Эффект ориентации неполярных длинноцепных молекул может быть достигнут введением в смазочную композицию ПАВ в весьма небольшой концентрации. Молекулы, оринтированные наиболее сильно, образуют слой толщиной около 20 нм, при нагревании толщина этого адсорбционного слоя уменьшается вследствие дезориентации молекул. Температура критического перехода, соответствующая предельной смазочной способности, связана с температурой десорбции ПАВ. При температурах ниже точки плавления металла молекулы группируются на его поверхности так, что полярная группа находится в контакте с металлом, а другие группы направлены наружу. Методом электронной дифракции можно установить, как изменяется поверхность металла при трении, — кристаллическая структура поверхностного слоя превращается в аморфную. [c.130]

    Таким образом, молекулы углеродистого вещества в условиях низкотемпературной прокалки связаны между собой не столько в виде полимерных цепей или кристаллитов, и не столько химическими связями полимерного типа, сколько обменными взаимодействиями, вызываемыми неспаренными электронами углеродных атомов и молекул. Именно эти взаимодействия, имеющие не направленное, а радиально-объемное действие,и являются причиной "аморфности", " урбострат-ности", "неупорядоченности" строения углеродистых материалов описываемого типа. По-видимому,такая структура коксов более доступна для внешнего воздействия - например, влияния кислорода воздуха или других газов. Такая инаюрмация в опубликованной литерату-86 [c.86]

    Кварцевое стекло представляет собой переохлажденный расплав двуокиси кремния. Его строение можно схематически представить как пространственную сетку, построенную из структурных. единиц п8Ю4/, (где п=1, 2, 3,. .., Пг) таким образом, что ни в одном направлении нельзя найти периодического расположения атомов или других структурных единиц. Структурные единицы 5104/, связаны между собой кислородными мостиками 81 — О—81, угол связи в которых может менять значение от 90 до 180°. Мы уже знаем, что непериодическая структура может быть одно-, двух- и трехмерной, т. е. иметь вид цепи, сетки или каркаса, которые в той или иной мере деформированы во всех трех направлениях. Уже отсюда видно, что каждая такая структура определенным образом упорядочена. Подчеркнем, что вообще о хаотическом, т. е. совершенно беспорядочном, соединении каких бы то ни было атомов не может быть и речи. На увеличение порядка в расположении атомов при переходе вещества в твердое, хотя и аморфное состояние указывает понижение энтропии на 15—25 кал-моль 1-град 1. Некристаллические тела можно рассматривать как многоатомные молекулы, находящиеся в твердом состоянии. Многие из них — не что иное, как многоядерные комплексы, в которых электронные пары, связывающие соседние группы структурных единиц (ядра), занимают двухцентровые орбитали. [c.118]

    Теория электрического пробоя диэлектриков, развитая Фрели-хом, исходит из того, что в основе процесса лежит ударная ионизация электронами. Справедливость этого подтверждается сравнительно малым отличием электрической прочности весьма разных по-свойствам диэлектриков (в том числе аморфных и кристаллических полимеров). При значительном возрастании напряженности электрического поля ускоряемые им электроны передают избыточную-энергию связанным электронам, которые, интенсивно переходя в зону проводимости, взаимодействуют с атомами вещества, изменяя структуру твердого диэлектрика и вызывая развитие его электрического пробоя. Согласно теории электрического пробоя диэлектриков, напряженность поля, при которой происходит пробой, должна экспоненциально уменьшаться с повышением температуры диэлектрика  [c.206]

    На явлении рассеяния основаны экспериментальные методы получения спектров плотности в структурном анализе. Эти методы применимы к определению функций распределения плотности независимо от агрегатного состояния вещества. В газе нет корреляции в расположении частиц, поэтому складываются интенсивности волн, рассеянных отдельными частицами. Из картины рассеяния, в случае одноатомного газа, путем фурье-преобразова-ния находят распределение электронной плотности в атомах. Для многоатомного газа с помощью модельных расчетов определяют строение газовых молекул, в растворах изучают форму и размеры макромолекул, частиц вирусов и т. д. В жидкостях и аморфных телах существует корреляция в расположении ближайших соседей. Анализ картин рассеяния в этом случае позволяет определить ближний порядок. В кристаллах, как следствие периодичности структуры, имеется как ближний, так и дальний порядок. Дифракционная картина, получаемая от кристалла, является по содержащейся в ней информации наиболее богатой. Из этой картины, даже для таких сложных объектов, как биополимеры, можно определить координаты всех атомов кристалла [8]. [c.14]

    Структурный критерий основан на оценке характера изменения структуры полимера на молекулярном уровне, которое может быть зафиксировано дифракционными методами исследования (рентгенография, электронография). В частности, кристаллизация аморфного полимера — это типичный переход типа беспорядокдальний трехмерный порядок . Структурным критерием возникновения трехмерной упорядоченности служит появление большого количества резких и интенсивных рефлексов на картинах рентгеновского или электронного рассеяния. При этом, однако, следует иметь в виду, что на дифракционных картинах кристаллических полимеров, как правило, число рефлексов, их интенсивность и резкость значительно меньше, чем на картинах низкомолекулярных кристаллических веществ. [c.182]


Смотреть страницы где упоминается термин Электронная структура аморфных веществ: [c.119]    [c.156]    [c.193]    [c.8]    [c.253]    [c.21]    [c.237]    [c.210]   
Смотреть главы в:

Химия твердых веществ -> Электронная структура аморфных веществ




ПОИСК





Смотрите так же термины и статьи:

Вещества аморфные

Структура аморфная



© 2025 chem21.info Реклама на сайте