Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Природные источники получения органических соединений. Переработка нефти

    Природные источники получения органических соединений. Переработка нефти [c.282]

    Этилен образуется из элементов (водорода и углерода) при атмосферном давлении и при очень высоких температурах (около 2000° С) 1141]. Кроме того, в большем или меньшем количестве он образуется наряду с другими углеводородами, главным образом метаном, этаном и пропиленом, нри всех высокотемпературных процессах расщепления насыщенных и ненасыщенных углеводородов и других органических соединений. По этой причине этилен всегда содержится в светильном газе [142], генераторном водяном газе и в других газообразных продуктах высокотемпературных процессов. Такие газовые смеси обычно не применяются для получения этилена из-за невысокого содержания в них этого углеводорода. Зато значи-гельным источником этилена являются газы, выделяющиеся при высокотемпературной переработке нефти и некоторых продуктов нефтяной промышленности. Особенно при газофазном крекинге (так называемый гиро-процесс ) [143], при котором пары нефти в смеси с парами воды пропускаются через контактную массу (в частности, через окись железа) при температуре 550—600°, в результате чего получается смесь газообразных углеводородов с содержанием этилена до 27% [144, 145]. Этилен образуется также в большом количестве при пиролизе природного газа. Па выход этилена большое влияние оказывают условия реакции. Реакционная смесь, получаемая путем пиролиза природного газа при 880°, содержит около 30% этилена [146]. [c.38]


    Реакции органических соединений используются крупнейшими отраслями химической промышленности для получения синтетических продуктов и переработки природных органических веществ. Причем если запасы нефти, каменного угля и природного газа в какой-то мере ограничены, то неисчерпаемым источником для получения органических соединений является двуокись углерода, связанная в карбонатных породах (известняки, мел и т. д.). Взаимодействие ее с водородом или аммиаком приводит к простейшим органическим соединениям метанолу (через окись углерода), мочевине, а от них — к бесконечной гамме органических веществ любой сложности. [c.16]

    Производство органических веществ зародилось очень давно, но первоначально оно базировалось на переработке растительного или животного сырья, состоявшей в выделении ценных веществ (сахар, масла) или их расщеплении (мыло, сиирт и др.). Органический синтез, т. с. получение болсс сложных веществ нз сравнительно простых, зародился в середине XIX века на основе побочных продуктов коксования каменного угля, содержавших ароматические соединения. Затем, уже в XX веке как источники органического сырья все большую роль стали и.грать нефть и природный газ, добыча, транспорт и переработка которых более экономичны, чем для каменного угля. На этих трех видах ископаемого сырья главным образом и базируется промышленность органического синтеза. В процессах их физического разделения, термического или каталитического расщепления (коксование, крекинг, пиролиз, риформинг, конверсия) получают пять главных групп исходных аеществ для синтеза многих тысяч других соединений  [c.8]

    Органическая химия достигла огромных успехов в изучении состава и в переработке каменного угля, нефти и природного газа таким образом, она тесно связана с угольной, нефтяной и газовой отраслями промышленности, обеспечивающими народное хозяйство, с одной стороны, различными видами топлива, с другой — сырьем для различных производств. Так, каменный уголь используют не только как топливо путем переработки из него добывают необходимый для металлургии кокс, а также светильный газ и каменноугольный деготь последние, в свою очередь, служат источником для получения многочисленных органических соединений, необходимых для синтеза высокомолекулярных соединений, красителей, лекарственных и взрывчатых веществ и т. п. Из нефти путем ее перегонки добывают различные виды горючего, смазочные материалы и другие ценные продукты. Природные газы, особенно попутный нефтяной газ, также представляют собой ценное химическое сырье и топливо, используемое как в промышленности, так и в быту. [c.15]


    Нефтехимическая промышленность, занятая переработкой нефти, является важнейшей отраслью химического производства и дает в некоторых странах более половины всех производимых органических соединений, из которых на первом месте стоят простые непредельные и предельные углеводороды (этилен, пропилен, бутадиен, метан, пропан и т. д.). Природные газы (преимущественно метан) являются не только высококачественным топливом, но и источником получения ценных органических соединений. [c.16]

    Современные крупнотоннажные отрасли промышленности, связанные с производством моторных топлив и смазочных материалов,— химическая, нефтехимическая, газовая и ряд других— в основном базируются на переработке нефти. Однако ее ресурсы с учетом быстро растущих темпов потребления являются весьма ограниченными. В этой связи в решениях XXVII съезда КПСС поставлен ряд задач, направленных на улучшение топливного баланса страны в первую очередь за счет сокращения доли нефтяного сырья, используемого в энергетике, а также совершенствования методов углубленной нефтепереработки и вовлечения твердых горючих ископаемых в производство синтетических жидких топлив, процессов газификации, энергохимической технологии и т. д. В современных условиях уголь оценивается с новых позиций как химическое сырье и топливо. Поэтому в Советском Союзе и во всех развитых капиталистических странах ведутся интенсивные исследования по разработке методов получения органических соединений и жидкого топлива на основе природного газа и угля. Наличие в нашей стране таких топливно-энергетических комплексов, как Канско-Ачинский, Экибастузский, Кузнецкий и др., служит реальной предпосылкой создания мощных сырьевых источников для развития процессов деструктивной гидрогенизации. [c.6]

    Сероводород является обычным спутником нефтей и попутных нефтяных газов. При перегонке сернистых нефтей также происходит выделение сероводорода (иногда в значительных количествах) в результате распада органических сернистых соединений при повышенной температуре [341—343] или в результате дегидрогенизации нефтяных углеводородов свободной серой [344]. Легкая окисляемость сероводорода кислородом воздуха делает его источником образования свободной серы в дистиллатах. Удаление серы сопряжено с дополнительными затратами средств для получения высококачественных моторных топлив и масел. Разработка надежного метода определения сероводорода имеет большое значение для нефтяной промышленности и связанной с ней промышленностью природного и синтетического газа. Большинство методов определения сероводорода предложено для анализа газов [345—355], причем удовлетворительные результаты получаются только в отсутствие низших меркаптанов. По-еидимому, аналитические методы определения НгЗ в газах могут быть использованы для определения его и в жидких нефтепродуктах. Представляется весьма целесообразной разработка более чувствительных методов определения сероводорода и меркаптанов при их совместном присутствии. Потенциометрические методы могли бы лечь в основу непрерывного автоматического контроля и управления некоторыми процессами при переработке нефти и природного газа. [c.39]

    Алкилфенолы образуются при разложении почти всех органических соединений. Они обнаружены в продуктах переработки каменного и бурого углей, в фенольных сточных водах и продуктах крекинга нефти. Некоторые алкилфенолы (тимол, карвакрол) встречаются в природных эфирных маслах. В перечисленных веществах, которые являются основными источниками получения низших алкилфенолов, наряду с фенолом и крезолами присутствуют также ксиленолы, мезитол, этил бензолы и некоторые высшие алкилфенолы. В продуктах, получаемых при крекинге нефти, встречаются алкилфенолы (например, бутил фенолы), отсутствующие в фенольных фракциях переработки углей. Некоторые алкилфенолы можно ползгчить также путем синтеза. В промышленности алкилфенолы применяются не в чистом виде, а в составе смесей. Среди изомерных моноалкилфенолов о/)то-замещенные характериззпются более высоким, давлением паров, пара-замещен-ные — более высокой температурой плавления. [c.29]


Смотреть страницы где упоминается термин Природные источники получения органических соединений. Переработка нефти: [c.11]   
Смотреть главы в:

Руководство по химии поступающим в вузы 1987 -> Природные источники получения органических соединений. Переработка нефти

Руководство по химии поступающим в вузы 1991 -> Природные источники получения органических соединений. Переработка нефти




ПОИСК





Смотрите так же термины и статьи:

Органические соединения источники

Получение пз соединений

Природный газ переработка

природные органические



© 2025 chem21.info Реклама на сайте