Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Типы колонок для вакуумной перегонки

    Дистиллят коксования подвергают атмосферной перегонке пз колбы с колонкой и вакуумной перегонке из колбы типа Кляйзена с отбором фракций бензиновой (н. к. — 200 °С), легкого газойля (200—350 °С), тяжелого газойля (350—450 °С), остатка (выше 450 °С). В итоге перегонки составляют развернутый материальный баланс процесса с учетом потерь  [c.132]


    Типы колонок для вакуумной перегонки [c.266]

    Войцеховский [2096] очищал чистый (в соответствии с классификацией Американского химического общества) бензол тремя различными методами 1) два литра бензола подвергали фракционированной перегонке на колонке типа колонки Свентославского с вакуумной рубашкой было отобрано пять средних фракций по 200 мл каждая 2) вторую порцию перекристаллизовывали и подвергали фракционированной перегонке 3) третью порцию подвергали азеотропной перегонке с этиловым спиртом и водой спирт удаляли из дистиллята промыванием водой, после чего бензол повторно перегоняли. Максимальное расхождение температур кипения образцов бензола, очищенных этими тремя способами, составляло 0,006 . [c.285]

    Начинать хроматографирование следует наименее полярным растворителем, обычно петролейным эфиром. Скорость отбора фракций зависит от типа и масштаба хроматографического процесса. Обычно скорость течения, измеренная в мл/ч, должна быть численно равна массе (г) использованного адсорбента. Большинство адсорбентов не затрудняет течение элюента по колонке. При применении некоторых особо тонкодисперсных адсорбентов, например оксида магния, может потребоваться введение вспомогательного фильтра, например кизельгурового. Для отбора элюата пригодны сборники фракций любого типа (см. гл. 8). Объем одной фракции устанавливают в соответствии с характером задачи и регулируют или с помощью переключателя с часовым механизмом при сборнике фракций, или путем изменения (притом только уменьшения) скорости потока элюента. Отобранные в течение определенных интервалов фракции анализируют методами ТСХ или ГЖХ, разработанными для данной методики разделения, и объединяют идентичные по составу фракции. Из объединенных фракций отгоняют растворитель посредством обычной или вакуумной перегонки в роторном испарителе при низкой температуре. Элюирование продолжают до тех пор, пока не перестанет элюироваться хроматографируемая проба. После этого элюирующую способность смеси увеличивают, повышая содержание более полярного компонента системы, который подают или в несколько порций, или постепенно (градиентное элюирование описание аппаратуры для градиентного элюирования см. в разд. 8.4 или в работе [45а]). Основное преимущество градиентного элюирования — это подавление образования хвостов сильно адсорбируемых [c.196]


    Методы, описанные выше, ограничивались большей частью относительно простыми веществами. Однако очень часто бывает желательно разделить сложную смесь на ее компоненты. Составляющие смесь фракции могут широко варьировать по своей летучести, молекулярному весу и термической устойчивости. Поскольку природа смеси очень часто бывает неизвестной, то трудно решить, какой тип высоковакуумного перегонного прибора следует применять. В этих случаях желательно провести предварительную перегонку в приборе с кипящей жидкостью для того, чтобы получить общее представление о способности вещества перегоняться в отношении стабильности и вязкости перегоняемой жидкости. Если температура кипения вещества высока, а термическая устойчивость мала, то это указывает на необходимость применения высоковакуумных перегонных приборов с текущей пленкой. Если же термическая устойчивость достаточно хороша, то можно воспользоваться перегонными приборами с кипящей жидкостью или обычными колонками для вакуумной ректификации. При выборе приборов для перегонки полезно рабочее правило, имеющее, правда, определенные границы применения, заключающееся в том, что вещества, молекулярный вес которых не превышает 300, могут перегоняться в приборах с кипящей жидкостью, а вещества с молекулярным весом в пределах от 300 до 1 ООО требуют высоковакуумных перегонных приборов с текущей пленкой. [c.430]

    При использовании водоструйного насоса (рис. Е.29) для ва-куумирования сосудов получают вакуум 1,3-10 —2,1 Па (давление паров воды) при скорости откачивания 0,5—2 м /ч. Более высокого вакуума (до 1,3- Па) добиваются, применяя масляные роторные насосы различных типов, а также парортутный и ртутный диффузионный насосы. Последние работают только при создании форвакуума <4-10з Па, например, масляным насосом. Вещества с более высоким давлением паров, одновременно загрязняющие насос, необходимо предварительно удалить, пропуская газ через поглотительную колонку или охлаждаемую ловушку. Проще применять так называемые газобалластные насосы, которые засасывают легко конденсирующиеся газы и пары без их конденсации, оказывающей вредное воздействие на насос. Поэтому эти насосы широко используют в вакуумной перегонке, при высушивании в вакууме и т. п. [c.506]

    Для осушки растворителя можно использовать различные методы. При относительно низком содержании воды эффективна прямая перегонка с использованием достаточно хорошей колонки. С помощью стеклянного сосуда, в котором в течение нескольких месяцев хранился ацетонитрил, мы обнаружили, что продукт, полученный при помощи описанной выше процедуры, содержал около 1 мМ воды без какой-либо дополнительной обработки. Для удаления больших количеств воды азеотропная смесь ацетонитрила с водой не пригодна из-за низкого содержания воды. К тому же температура ее кипения приближается к температуре кипения ацетонитрила. Более эффективна перегонка с хлористым метиленом, так как и это вещество (т. к. 41,5°С), и его азеотропная смесь с водой (т. к. 38,1°С при 1,5%) П2О) легко отделяются от ацетонитрила при малых потерях последнего. Молекулярные сита (тип ЗА) можно эффективно использовать для осушки ацетонитрила, однако их нельзя применять для осушки соответствующих растворов с фоновым электролитом, поскольку калий, содержащийся в молекулярных ситах, обменивается с катионом электролита и осаждается на поверхности молекулярных сит, что приводит к уменьшению проводимости раствора. Для очистки ацето нитрильных растворов Na 104, БТЭА и ПТПА в нашей лаборатории с успехом был применен следующий метод предварительно взвешенная соль в течение нескольких часов прокаливалась в вакууме при температуре 150 °С. Соответствующий сосуд был снабжен притертым шлифом, который позволял непосредственно соединять его с колонкой с молекулярным ситом (тип Linde ЗА 25,4 мм х 1,2 м) через колонку раствор просачивался со скоростью 1 мл/мин. Электролизер высушивался в вакуумной печи и снабжался шлифами, при помощи которых его можно было соединять с вакуумной линией и сосудом с растворителем так, что, используя давление чистого азота, можно было обеспечить перекачку растворителя без j oHW Электролизер также снабжался перегородками для до- [c.10]

    На рис. 51 изображена колонка Черониса для полумикроперегонки с насадкой типа Хели-Грид или Супер-Кул Подбильняка и вакуумной рубашкой в виде муфты. Колба для перегонки имеет объем 5, 10 или 25 мл и нагревается электрообогревателем. Колонка соединена со сменным прием- [c.56]


Смотреть страницы где упоминается термин Типы колонок для вакуумной перегонки: [c.34]   
Смотреть главы в:

Лабораторная техника органической химии -> Типы колонок для вакуумной перегонки




ПОИСК





Смотрите так же термины и статьи:

Перегонка вакуумная

Перегонка колонки

Типы колонок



© 2025 chem21.info Реклама на сайте