Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхность, напряжение теория молекулярная

    Таким образом, при чисто механическом подходе на основе понятий механики сплошных сред или с учетом молекулярного строения твердых тел описание прочностных свойств сводится к оперированию понятиями предела прочности, предельных состояний и к системе расчетов потери устойчивости изделий из тех или иных материалов. Основная задача механики разрушения — определить те предельные критические условия, при которых наступает разрушение. Соответствующие теории называют теориями предельных состояний. К ним относятся теории максимального нормального напряжения, максимального удлинения, предельного значения упругой энергии и другие, более сложные. В этих теориях разрушение рассматривается как критическое событие при достижении предельного состояния (предельной поверхности разрушения), которое описывается в общем случае комбинацией компонентов тензора деформаций и тензора напряжений. [c.284]


    Теория Гриффита (см. главу 9) о хрупком разрушении пород постулирует существование микротрещин и молекулярных разрывов во всех кристаллических веществах. Под воздействием нагрузки разрушение начинается с концентрации напряжений на концах этих трещин. Во время бурения скважины лри ударах зубьев долота о горную породу образуются новые трещины. Рост имеющихся трещин или образование новых ведет к созданию дополнительных поверхностей и увеличению свободной поверхностной энергии. Поэтому в качестве постулата Ребиндер выдвинул положение о том, что жидкость, адсорбируемая на Поверхности трещин, снижает твердость породы за счет уменьшения поверхностной энергии образующихся трещин и, следовательно, повышает буримость породы. [c.287]

    Опыты показали, что при увеличении напряжения на электродах ток не проходит по цепи электроды — раствор до тех пор, пока не будет достигнуто определенное перенапряжение. После достижения такого критического перенапряжения сила тока вначале возрастает, а затем падает до нуля. За время прохождения тока на поверхности монокристалла выделяется масса серебра, равная массе монослоя, который мог бы покрыть всю поверхность электрода. Затем напряжение вновь увеличивается до критического и по цепи проходит новый импульс тока (рис. 4.8). Данные о росте монокристалла серебра удалось количественно интерпретировать на основе теории формирования и разрастания двумерных зародышей на молекулярно-гладких совершенных гранях, что доказывает реальность рассмотренного механизма роста. Такой вывод подтверждают и многочисленные данные о зависимости скорости роста от пересыщения [66— 69]. [c.68]

    Процесс аннигиляции трещин, наведенных в толще твердого тела при его упругой деформации, в реальных условиях несовершенен. Молекулы внешней среды и коагулирующие дефекты, проникая в такие трещины, экранируют молекулярные силы, пытающиеся вновь сомкнуть образовавшуюся трещину, в результате чего она смыкается неполностью. В результате при следующем деформировании с неизменной величиной и энергией деформирующего усилия длина и вновь образованная поверхность трещины возрастают и при достаточном числе переменных циклов нагрузки тело разрушается, хотя величина напряжений значительно ниже значения предела упругих напряжений Од. Это явление известно как усталостное разрушение и может быть значительно усилено, если деформирование производится в среде поверхностно-активного вещества, молекулы которого стремятся проникнуть в трещины, наведенные при деформации. Применение поверхностно-активных веществ, теория которых разработана акад. П. А. Ребиндером [38], имеет большое практическое значение. Действие поверхностно-активных веществ становится заметным ввиду многократного повторения актов измельчения, а также ввиду снижения интенсивности процессов коагуляции частиц измельченного материала. [c.18]


    При чистом граничном скольжении будет выражаться не уравнением (5.1), а уравнением (5.8). Это значит, что возникающие на границе скольжения касательные напряжения будут способствовать увеличению скорости скольжения. В этом случае мы имеем чисто внешнее трение полимеров в вязкоэластическом состоянии по твердым гладким поверхностям. Теория внешнего трения твердых полимеров смыкается, таким образом, с теорией пристенного скольжения. При дальнейшем развитии теории пристенного скольжения необходимо, следовательно, учитывать результаты, полученные молекулярно-кинетической теорией трения полимеров (см. гл. 4). [c.149]

    Необратимому разрушению полимеров в процессе приложения растягивающего напряжения посвящены обширные исследования. Для объяснения механизма разрушения связи в растянутом образце были предложены различные теории и молекулярные модели. Первые экспериментальные и теоретические исследования проводили Журков с сотр., начиная с 1957 г. [866—870, 1051—1055, 1060, 1061 ]. Эти авторы широко использовали метод ЭПР для изучения разрыва цепи в результате одноосного растяжения полимеров. Образование свободных радикалов в полимерах в процессе механического разрушения впервые было обнаружено в 1959 г. Бреслером [968, 971, 972]. Использование ЭПР в процессе измельчения облегчается благодаря огромной поверхности измельченных частиц ( -10 —10 см /г), которая участвует в образовании высокой концентрации радикалов. Для одноосно напряженных полимеров положительные результаты исследования ЭПР-спектров были получены при использовании высокоориентированных волокон из таких полимеров, как полиамид 6, полиамид 66, полиэтилен и натуральный шелк [395, 584, 652]. Высокоориентированные каучуки также дают ЭПР-спектры радикалов в растянутом образце при низких температурах [19, 538, 628]. [c.308]

    Назовем систему, которая под действием постоянного напряжения может сообщать работу при перемещении своих внешних границ, — консервативной. Критерий разрушения определяется тем [4, с. 126], что общая энергия консервативной системы уменьшается с увеличением размера дефекта. Этот критерий устана-вливается-на- юнованин термодинамического анализа. При энер гетическом анализе процесса разрушения система рассматривается как одно целое. Гриффит [75, с. 163] предложил два критерия хрупкого разрушения и рассмотрел их соотношение. Основываясь на том, что размеры дефектов, образующихся при изготовлении образца, превышают молекулярные, реакцию тела на действие приложенных механических нагрузок представляют как реакцию непрерывной упругой среды. Гриффит считал, что применение математической теории упругости на основе предположения о том, что трещина является поверхностью свободной от сил сцепления, должно дать распределение напряжений, справедливое для всех точек тела, за исключением области вблизи концов трещины . Однако именно эта область представляет наибольший интерес. Применяя формальную теорию упругости, естественно, лишаются возможности интерпретировать процесс разрушения непосредственно в молекулярных терминах. [c.265]

    При малых деформациях спектр времен релаксации вулканизата с сажей, обладающей однородной поверхностью, сдвигается в область больших времен, а для актданой сажи с неоднородной поверхностью — резко падает в этой области. При больших деформациях (более 50%) спектр вулканизатов с активными сажами см.ещается в область больших времен релаксации тем больше, чем больше упрочняющее действие сажи. При деформациях более 50% увеличение высоты релаксационного спектра и смещение его в область больших времен при использовании активной сажи обусловлено возникновением упрочненных структур и наличием прочных связей полимер — наполнитель. Повышение температуры ускоряет релаксационные процессы и приводит ос разрушению слабых связей, вследствие чего уменьшается высота релаксационного спектра. Молекулярная теория, позволяющая описать релаксационные свойства наполненных эластомеров, была развита Сато Йосиясу [255]. На основе статистической теории высокоэластичности им выведены формулы для расчета релаксации напряжений, модуля- упругости и механических потерь наполненных полимеров. [c.138]

    Теория де Бура — Цвиккера подверглась суровой критике Брунауэра [18], основное возражение которого заключалось в том, что эффект поляризации недостаточно велик. Это привело к почти полному забвению поляризационной теории. Однако некоторые новые данные показывают, что в этой теории все же имеется рациональное зерно. Бьюиг и Зисман [64], в частности, показали, что адсорбция н-гексана на различных металлах приводит к значительному изменению поверхностного потенциала АУ, соответствующему довольно большому индуцированному дипольному моменту порядка 0,3 дебая (В). Согласно-расчетным данным, для индуцирования такого диполя на молекулах н-гексана на поверхности должно быть поле напряженностью около 10 В/см. Значительное изменение АУ обнаружено и при адсорбции инертных газов на металлах [65]. Так, по данным Притчарда [66], при адсорбции ксенона на меди, никеле, золоте и платине при —183°С значение АУ меняется от 0,2 до 0,8 В, причем в момент завершения образования монослоя наклон зависимости АУ от V резко уменьшается. По мнению Бенсона и Кинга [67], адсорбция инертных газов на окиси алюминия в значительной мере определяется локальными электрическими полями. Поверхность графита, по-видимому, также характеризуется сильным полем, обусловленным разделением д-электронов и положительно заряженных атомов углерода. В последнее время получены спектроскопические данные (гл. XIII, разд. Х1П-4), свидетельствующие о значительной поляризации адсорбированных частиц. Как показано в разд. XIV-10, даже на поверхностях молекулярных кристаллов дисперсионным силам можно приписать только часть энергии адсорбции. Более того, на поверхностях, покрытых прослойками предварительно адсорбированных инертных веществ, потенциальное поле убывает почти экспоненциально. Таким образом, можно считать доказанным, что в общем случае адсорбция в первом слое больше определяется электростатическим поляризационным взаимодействием (уравнение (У1-38), гл. VI), чем дисперсионными силами. [c.463]



Смотреть страницы где упоминается термин Поверхность, напряжение теория молекулярная: [c.174]    [c.219]    [c.295]    [c.126]    [c.292]    [c.314]    [c.492]   
Физика и химия твердого состояния органических соединений (1967) -- [ c.364 ]




ПОИСК







© 2025 chem21.info Реклама на сайте