Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Межфазные явления п коэффициент массопередачи

    При диффузии уксусной и бензойной кислот в неполярные растворители, вероятно, происходит полимеризация, а у диэтиламина—его гидратация в водной фазе. Замедление в некоторых системах имеет место для обоих направлений массопередачи (табл. 1-13, системы 1, 2, 3,4,7, 10), в остальных оно установлено только для одного направления, что можно объяснить только возникновением каких-либо иных явлений. Так например, в системе изобутанол— вода—диэтиламин (система 6) при противоположном направлении массопередачи появляется спонтанная межфазная турбулентность, которая увеличивает коэффициент массопередачи выше расчетного [c.82]


    Характер движения жидкости на тарелке оказывает существенное влияние на условия массообмена, поэтому при оценке разделительной способности обычно учитывают гидродинамическую структуру потоков. При этом исходят из понятия локальных характеристик явления массообмена в элементарном объеме с однородной гидродинамической структурой, распространяя последние на все массообменное пространство. Выражения (2-61) и (2-62) как раз и используются для локальной скорости массопередачи. Следует заметить, что в этих выражениях скорость массопередачи отнесена к единице поверхности раздела фаз. Однако практическое определение последней сопряжено со значительными трудностями, и поэтому в большинстве случаев используется понятие объемного коэффициента массопередачи, т. е. произведение коэффициента массопередачи на величину поверхности межфазного контакта, приходящуюся на единицу объема массообменного пространства. [c.127]

    Прп обсуждении наблюдений Томсона уже упоминалось, что межфазные явления могут оказывать преимущественное влияние либо на коэффициент массопередачи, либо на поверхность фазового контакта. Первый эффект значителен только в том случае, если глубина фаз существенно больше толщины приведенных пленок, движущихся вместе с поверхностью раздела фаз. Это явление п будет обсуждаться вначале. [c.208]

    Если скорость процесса в системе ж — ж полностью контролируется скоростью реакции, то она не должна зависеть от поверхности контакта фаз и, следовательно, от степени перемешивания. Однако это не всегда справедливо. Процесс, который, как кажется, не зависит от перемешивания, при скорости особенно выше средней, не будет контролироваться только химической кинетикой. Как указывалось при обсуждении нитрования ароматических соединений, любое возрастание межфазной поверхности за счет перемешивания будет сопровождаться уменьшением размеров капель. Это приведет к снижению коэффициента массопередачи в дисперсной фазе вследствие уменьшения внутренней циркуляции в каплях п взаимоде -ствия капель. Приведенные факторы могут компенсировать друг друга и тогда окажется, что процесс, контролируемый массопередачей, не зависит от интенсивности перемешивания. В результате единственно твердый вывод будет таким, если скорость процесса зависит от степени перемешивания, значит важны явления массопередачи. Принимается, что перемешивание достаточно для получения однородной дисперсии. [c.374]

    К сожалению, закон затухания турбулентных пульсаций у свободной границы двух несмешивающихся жидкостей и влияние на него межфазного натяжения и других физико-химических характеристик системы неизвестны [33]. В связи с этим все предложенные для описания массопередачи уравнения [3] носят эмпирический или полуэмпирический характер. С помощью этих уравнений могут быть найдены коэффициенты массоотдачи. Переход к коэффициентам массопередачи можно провести с использованием правила аддитивности фазовых сопротивлений. При этом необходимо учитывать, что обсуждаемые эмпирические уравнения получены на модельных системах в идеализированных условиях, т. е. в отсутствие ряда явлений, с которыми нередко приходится сталкиваться в конкретных условиях при исследовании кинетики. Среди таких явлений следует особо отметить самопроизвольную поверхностную конвекцию [58], возникающую вследствие различий межфазного натяжения на разных участках границы раздела фаз, и поверхностную ассоциацию, приводящую к образованию конденсированных межфазных пленок разнообразной природы [61—65]. Первое явление вызывает ускорение массопередачи и уменьшение зависимости чисел 5Н от чисел Не. Второе, наоборот, приводит к замедлению переноса вследствие ухудшения условий перемешивания у границы раздела и к затруднениям при переходе молекул через блокированную границу. [c.163]


    При построении подсистемы Гидродинамика , как правило, рассматривается микро- и макроуровень. Цель анализа гидродинамики на микроуровне — изучение явлений, происходящих на границе раздела фаз и определяющих в конечном итоге эффективность межфазной массопередачи. Исследования обычно сводятся к получению эмпирического выражения функциональных зависимостей (УП,46), определяющих матрицы коэффициентов массоотдачи. [c.267]

    При построении подсистемы Гидродинамика , как правило, рассматриваются два уровня — микроуровень и макроуровень. Анализ гидродинамики на микроуровне имеет целью изучить явления, происходящие на границе раздела фаз и определяющие в конечном итоге эффективность межфазной массопередачи. Исследования в этой части обычно сводятся к получению эмпирического выражения в функциональных зависимостях (V, 21), определяющих матрицы коэффициентов массоотдачи. [c.251]

    Оба явления, описанные Томсоном, одинаковы в основе — местное уменьшение поверхностного натяжения за счет введения спирта вызывает направленное от центра движение жидкости с меньшим поверхностным натяжением. Однако с точки зрения инженерной химической технологии эти эффекты различны. В первом случае движение на поверхности раздела фаз и в слоях, к ней прилегаюш,их, изменяет сопротивление массопередачи и, следовательно, значение коэффициента массопередачи, в то время как во втором случае на скорость массопередачи будет главным образом оказывать влияние изменение величины межфазной поверхности. [c.206]

    Следуя обобщению Абрамзона и Когана [38], реакция почти полностью протекает в водной фазе, если в реакции в системе жидкость — жидкость принимают участие ионные и неионные реагенты. На этом основании Мансури и Мадден приняли, что процесс восстановления происходит в водной фазе. Затем они предложили две возможные модели для объяснения своих результатов. Одна из них включает массопередачу, сопровождаемую быстрой реакцией псевдопервого порядка, согласно другой,— процесс определяется массопередачей. Последняя кажется более вероятной. С другой стороны было выведено уравнение скорости процесса, отражающее прямую пропорциональную зависимость между скоростью восстановления и поверхностью контакта фаз. Затем они предложили использовать этот метод для измерения поверхности контакта фаз, однако это предложение весьма сомнительно. Прямая пропорциональность между скоростью восстановления и межфазной поверхностью требует, чтобы коэффициент массопередачи был постоянным. Сложная зависимость коэффициента от межфазных явлений и вза- [c.373]

    Явление межфазовой турбулентности напротив повышает скорость массопереноса. Высказывается мнение [286], что увеличение скорости массопередачи в отсутствие ПАВ в большинстве систем можно объяснить образованием капиллярных волн на поверхности раздела фаз, источником которых может быть-эффект Марангони и естественная конвекция. Брюкнер [287] отмечает, что влияние межфазовой турбулентности на С1Корость массопередачи обычно объясняют двояким образом. Во-первых, как результат выравнивания градиента поверхностного натяжения, в результате чего, возрастает величина коэффициента массопередачи, во-вторых, как нарушение целостности, поверхности раздела, в результате чего возрастает поверхность массопередачи. Очевидно, на практике одновременно реализуются оба механизма. Явление межфазной турбулентности тесно связано с (процессом массопередачи. Экспериментально установлено, что ее появление или отсутствие зависит от направления массопередачи. [c.158]

    Турбулизация межфазной границы может быть обусловлена- также возникающими при тепло- или массопередаче локальными изменениями поверхностного натяжения. Учет влияния концентрационных и температурных изменений поверхностного натяжения на гидродинамику вблизи межфазной границы представляет собой весьма сложную и в настоян1ее время еще не решенную задачу (необходимо исследовать устойчивость решения уравнения Навье — Стокса по отношению к малым возмущениям — локальным изменениям скорости). Пока сделаны лишь первые попытки решения этой задачи [72, 73]. В частности, показано [72], что возможность возникновения неустойчивости существенно зависит от знака гиббсовой адсорбции растворенного вещества в состоянии термодинамического равновесия, а также от соотношения между кинематическими вязкостями соприкасающихся фаз и коэффициентами диффузии веществ, которыми обмениваются эти фазы. Объяснено явление стационарной ячеистой картины конвективного движения, вызванного локальными градиентами поверхностного натяжения [73].. Дальнейшие исследования в этой области наталкиваются на серьезные математические трудности. [c.183]


Смотреть страницы где упоминается термин Межфазные явления п коэффициент массопередачи: [c.363]    [c.243]    [c.575]   
Смотреть главы в:

Последние достижения в области жидкостной экстракции -> Межфазные явления п коэффициент массопередачи




ПОИСК





Смотрите так же термины и статьи:

Коэффициент массопередачи

Массопередача

Массопередача массопередачи

Межфазные

Межфазные явления



© 2025 chem21.info Реклама на сайте