Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент межфазных явлений

    Прп обсуждении наблюдений Томсона уже упоминалось, что межфазные явления могут оказывать преимущественное влияние либо на коэффициент массопередачи, либо на поверхность фазового контакта. Первый эффект значителен только в том случае, если глубина фаз существенно больше толщины приведенных пленок, движущихся вместе с поверхностью раздела фаз. Это явление п будет обсуждаться вначале. [c.208]


    Рассмотренные поверхностные явления обусловлены гидродинамическим воздействием потока на слой. Отрыв единичной частицы или группы частиц от межфазной поверхности в определенном диапазоне скоростей С/ энергетически невыгоден Возникаюш ие силы взаимодействия частиц относительно невелики (разумеется, много меньше межмолекулярных сил в капельной жидкости), поэтому невелико поверхностное давление, относительно высок скоростной коэффициент объемного расширения, заметна сжимаемость псевдоожиженного слоя. При высоких степенях расширения, когда частицы удалены одна от другой, силы взаимодействия (а с ними и эффективное поверхностное натяжение) резко понижены, и упомянутые выше явления вырождаются. [c.480]

    При диффузии уксусной и бензойной кислот в неполярные растворители, вероятно, происходит полимеризация, а у диэтиламина—его гидратация в водной фазе. Замедление в некоторых системах имеет место для обоих направлений массопередачи (табл. 1-13, системы 1, 2, 3,4,7, 10), в остальных оно установлено только для одного направления, что можно объяснить только возникновением каких-либо иных явлений. Так например, в системе изобутанол— вода—диэтиламин (система 6) при противоположном направлении массопередачи появляется спонтанная межфазная турбулентность, которая увеличивает коэффициент массопередачи выше расчетного [c.82]

    Характер движения жидкости на тарелке оказывает существенное влияние на условия массообмена, поэтому при оценке разделительной способности обычно учитывают гидродинамическую структуру потоков. При этом исходят из понятия локальных характеристик явления массообмена в элементарном объеме с однородной гидродинамической структурой, распространяя последние на все массообменное пространство. Выражения (2-61) и (2-62) как раз и используются для локальной скорости массопередачи. Следует заметить, что в этих выражениях скорость массопередачи отнесена к единице поверхности раздела фаз. Однако практическое определение последней сопряжено со значительными трудностями, и поэтому в большинстве случаев используется понятие объемного коэффициента массопередачи, т. е. произведение коэффициента массопередачи на величину поверхности межфазного контакта, приходящуюся на единицу объема массообменного пространства. [c.127]

    Если скорость процесса в системе ж — ж полностью контролируется скоростью реакции, то она не должна зависеть от поверхности контакта фаз и, следовательно, от степени перемешивания. Однако это не всегда справедливо. Процесс, который, как кажется, не зависит от перемешивания, при скорости особенно выше средней, не будет контролироваться только химической кинетикой. Как указывалось при обсуждении нитрования ароматических соединений, любое возрастание межфазной поверхности за счет перемешивания будет сопровождаться уменьшением размеров капель. Это приведет к снижению коэффициента массопередачи в дисперсной фазе вследствие уменьшения внутренней циркуляции в каплях п взаимоде -ствия капель. Приведенные факторы могут компенсировать друг друга и тогда окажется, что процесс, контролируемый массопередачей, не зависит от интенсивности перемешивания. В результате единственно твердый вывод будет таким, если скорость процесса зависит от степени перемешивания, значит важны явления массопередачи. Принимается, что перемешивание достаточно для получения однородной дисперсии. [c.374]


    В 1804 г. Томас Юнг обосновал теорию капиллярных явлений на принципе поверхностного натяжения. Он также наблюдал постоянство угла смачивания жидкостью поверхности твердого тела (краевого угла) и нашел количественное соотношение, связывающее краевой угол с коэффициентами поверхностного натяжения соответствующих межфазных границ  [c.581]

    К сожалению, закон затухания турбулентных пульсаций у свободной границы двух несмешивающихся жидкостей и влияние на него межфазного натяжения и других физико-химических характеристик системы неизвестны [33]. В связи с этим все предложенные для описания массопередачи уравнения [3] носят эмпирический или полуэмпирический характер. С помощью этих уравнений могут быть найдены коэффициенты массоотдачи. Переход к коэффициентам массопередачи можно провести с использованием правила аддитивности фазовых сопротивлений. При этом необходимо учитывать, что обсуждаемые эмпирические уравнения получены на модельных системах в идеализированных условиях, т. е. в отсутствие ряда явлений, с которыми нередко приходится сталкиваться в конкретных условиях при исследовании кинетики. Среди таких явлений следует особо отметить самопроизвольную поверхностную конвекцию [58], возникающую вследствие различий межфазного натяжения на разных участках границы раздела фаз, и поверхностную ассоциацию, приводящую к образованию конденсированных межфазных пленок разнообразной природы [61—65]. Первое явление вызывает ускорение массопередачи и уменьшение зависимости чисел 5Н от чисел Не. Второе, наоборот, приводит к замедлению переноса вследствие ухудшения условий перемешивания у границы раздела и к затруднениям при переходе молекул через блокированную границу. [c.163]

    При построении подсистемы Гидродинамика , как правило, рассматривается микро- и макроуровень. Цель анализа гидродинамики на микроуровне — изучение явлений, происходящих на границе раздела фаз и определяющих в конечном итоге эффективность межфазной массопередачи. Исследования обычно сводятся к получению эмпирического выражения функциональных зависимостей (УП,46), определяющих матрицы коэффициентов массоотдачи. [c.267]

    При построении подсистемы Гидродинамика , как правило, рассматриваются два уровня — микроуровень и макроуровень. Анализ гидродинамики на микроуровне имеет целью изучить явления, происходящие на границе раздела фаз и определяющие в конечном итоге эффективность межфазной массопередачи. Исследования в этой части обычно сводятся к получению эмпирического выражения в функциональных зависимостях (V, 21), определяющих матрицы коэффициентов массоотдачи. [c.251]

    Описанные закономерности свидетельствуют о различных проявлениях роли энергетических и структурных факторов в общем комплексе явлений адгезионного взаимодействия. С одной стороны, первые из них непосредственно определяются подвижностью макромолекулярных цепей адгезивов, поскольку ее мера линейно связана как с энергиями активации внутрифазных процессов в переходных слоях и межфазных процессов на геометрической границе раздела фаз (рис. 81,5), так и с относительным числом межфазных связей (рис. 82,7) оба эти параметра прямо коррелируют между собой (рис. 81,5). С другой стороны, ориентирующее влияние твердой поверхности субстрата нивелирует различия в энергетике внутрифазного взаимодействия в адгезивах (оцениваемые, например, их полярностью), что обусловливает экстремальные зависимости коэффициента уравнения (132) и от высоты активационного барьера (рис. 81,5), и от относительного числа межфазных связей (рис. 82,2). Отсюда понятна линейность зависимости энергии единичной межфазной связи от коэффициента упаковки переходных слоев эластомеров (рис. 80,4), энергии активации (рис. 81,9) и относительного числа межфазных связей (рис. 82,5). Это обус- [c.162]

    В ряде случаев влияния поверхностного сопротивления можно избежать. При некоторых условиях вблизи границы раздела фаз в жидкостях возможно самопроизвольное возникновение конвективных потоков, приводящее к значительному повыщению коэффициентов массоотдачи (от 3 до 10 раз). Это объясняется появлением на межфазной границе локальных градиентов поверхностного натяжения, зависящего от температуры или концентрации переносимого вещества. Такое явление (поверхностная или межфазная турбулентность), называемое также эффектом Марангони, обусловлено потерей системой гидродинамической устойчивости. Межфазная поверхность стремится перейти к состоянию с минимумом поверхностной энергии, в результате чего расширяется область с низким коэффициентом поверхностного натяжения а. Заметим, что межфазные поверхности могут терять свою устойчивость только, если при протекании массообменных или тепловых процессов происходит локальное изменение коэффициента поверхностного натяжения а так, что он убывает с ростом температуры или концентрации. В противоположном случае (или, например, противоположном направлении переноса) межфазная неустойчивость, как правило, не возникает. Этот факт подтверждают экспериментальные и теоретические исследования скоростей абсорбции и десорбции слаборастворимых газов водой [43]. [c.352]


    Следуя обобщению Абрамзона и Когана [38], реакция почти полностью протекает в водной фазе, если в реакции в системе жидкость — жидкость принимают участие ионные и неионные реагенты. На этом основании Мансури и Мадден приняли, что процесс восстановления происходит в водной фазе. Затем они предложили две возможные модели для объяснения своих результатов. Одна из них включает массопередачу, сопровождаемую быстрой реакцией псевдопервого порядка, согласно другой,— процесс определяется массопередачей. Последняя кажется более вероятной. С другой стороны было выведено уравнение скорости процесса, отражающее прямую пропорциональную зависимость между скоростью восстановления и поверхностью контакта фаз. Затем они предложили использовать этот метод для измерения поверхности контакта фаз, однако это предложение весьма сомнительно. Прямая пропорциональность между скоростью восстановления и межфазной поверхностью требует, чтобы коэффициент массопередачи был постоянным. Сложная зависимость коэффициента от межфазных явлений и вза- [c.373]

    Турбулизация межфазной границы может быть обусловлена- также возникающими при тепло- или массопередаче локальными изменениями поверхностного натяжения. Учет влияния концентрационных и температурных изменений поверхностного натяжения на гидродинамику вблизи межфазной границы представляет собой весьма сложную и в настоян1ее время еще не решенную задачу (необходимо исследовать устойчивость решения уравнения Навье — Стокса по отношению к малым возмущениям — локальным изменениям скорости). Пока сделаны лишь первые попытки решения этой задачи [72, 73]. В частности, показано [72], что возможность возникновения неустойчивости существенно зависит от знака гиббсовой адсорбции растворенного вещества в состоянии термодинамического равновесия, а также от соотношения между кинематическими вязкостями соприкасающихся фаз и коэффициентами диффузии веществ, которыми обмениваются эти фазы. Объяснено явление стационарной ячеистой картины конвективного движения, вызванного локальными градиентами поверхностного натяжения [73].. Дальнейшие исследования в этой области наталкиваются на серьезные математические трудности. [c.183]

    В работах В. Компаниец с соавт. было отмечено, что при исследовании процессов химического превращения, происходящих в условиях неизотермического турбулентного смешения реагирующих потоков, не всегда необходимо знать детальную картину движения среды, в которой протекают указанные процессы. В этом случае гидродинамические условия и пространственное распределение компонентов можно описывать с помощью осредненных величин. Такое упрощение заведомо оправдано, если исследователя интересует лишь кинетика самого химического превращения (в нашем случае межфазного переноса компонента) и явлений переноса. При этом пульсации случайных полей скорости, температуры и концентрации учитывают феноменологически с помощью эффективных коэффициентов переноса. [c.142]

    В работе на основе методов механики гетерогенных сред и неравновесной термодинамики получено выражение для термодинамической движущей силы, учитывающей коллоидно-химические явления в межфазной области и, в частности, образование ДМС и пленок. Предложен способ вычисления разности давлений в фазах и в пленке, толщины последней, коэффициентов диффузии в ней, а также такой структурной характеристики пленки, как порозность изучена динамика диффузионных пофаничных слоев и пленок установлено, что диффузионное сопротивление в пористых пленках изменяется со временем, как правило, проходя через максимум. Предложен физический механизм этого явления. [c.56]

    Оба явления, описанные Томсоном, одинаковы в основе — местное уменьшение поверхностного натяжения за счет введения спирта вызывает направленное от центра движение жидкости с меньшим поверхностным натяжением. Однако с точки зрения инженерной химической технологии эти эффекты различны. В первом случае движение на поверхности раздела фаз и в слоях, к ней прилегаюш,их, изменяет сопротивление массопередачи и, следовательно, значение коэффициента массопередачи, в то время как во втором случае на скорость массопередачи будет главным образом оказывать влияние изменение величины межфазной поверхности. [c.206]

    Вард и Брукс [12] первые заметили подобное явление ири массо-иередаче через свободную межфазную иоверхность. При определения коэффициентов молекулярной диффузии они столкнулись с очень сильным локальным перемешиванием, происходящим спонтанно при переносе некоторых органических кислот между водной фазой и толуолом. [c.207]

    II рода за счет закономерного изменения в целое число раз параметров решетки этих промежуточных фаз. Ясно, что различия в статистических и динамических методах нагрузки при твердотельных фазовых переходах сводятся к различиям в относительных скоростях образования зародышей и релаксации упругих напряжений, а также к различиям в механизмах сохранения, движения и распада межфазных границ. Хотя сделать детальный расчет упругих полей в настоящее время невозможно, однако можно рассмотреть этот механизм в следующем порядке. В данном случае упругая энергия на единицу объема зародыша равна приблизительно A(Jдeф G(u°ih) + (v(u°ii) , где коэффициенты и°ц (1фк) характеризуют сдвиговые явления, т. е. изменение углов между соответствующими кристаллографическими плоскостями, u°ih характеризует относительное изменение объема, а G vi Kv — модули сдвига и объемного сжатия (для графита и алмаза модули сдвига равны 480 и 440 ГПа, а модули объемного сжатия —440 и 34ГПа, соответственно). При расчетах нижней границы превращения графита в алмаз использовалась как близость обеих модулей сдвига, так и незначительная величина объемного модуля графита, т. е. данными слагаемыми в определенных случаях можно пренебречь, тогда как для обратного превращения ситуация иная, что н обуславливает монотропность превращения. Как показывают расчеты [25], для простейших структур (в том числе и для рассматриваемого типа) коэффициенты с точностью до членов второго порядка малости пропорциональны относительному изме- [c.308]

    Определенная связь между устойчивостью пленок и механическими свойствами адсорбционных слоев ПАВ обнаружена Фрайзом. Он нашел частотную зависимость затухания поперечных волн на межфазной границе вода— циклогексан в присутствии различ- 20 ных количеств полиэтиленгликолевого эфира нонилфенола N9-20, при- /5 меняемого в качестве стабилизатора. Показано, что при концентрации ПАВ, равной с , коэффициенты затухания а, соответствующие фиксированной частоте, резко возрастают (рис. 56). В настоящее время теоретическая обработка результатов измерений еще не завершена и отмеченное явление не получило достаточно полного объяснения. [c.113]

    Уменьшение поглощения ультразвука после максимума (рис. 55, а, б) объясняется образованием сверхмицеллярных агрегатов в процессе коагуляции гидроокисей, выделяющихся в результате гидролиза. Это явление связано с некоторой дегидратацией частиц вследствие снятия электростатического состояния межфазной поверхности и расклинивающего эффекта. Последующее возрастание коэффициента поглощения ультразвука при добавлении новых порций гидролизующихся солей обусловлено определенной иммобилизацией воды в структурах сверхмицеллярных агрегатов, образующихся при коагуляции гидроокисей. Особенно заметно такое явление в системе, возникающей при гидролизе хлорида алюминия, где поглощение ультразвука значительно выше, чем в исходных растворах. [c.138]

    Жидкофазные каталитические процессы в указанном плане обладают рядом особенностей, однако принципиальные отличия этих реакций от газофазных здесь проявляются тогда, когда поток реагентов становится двухфазным или многофазным, т. е. когда реакции на катализаторе протекают между жидкостью и газом или двумя несмеши-вающимися жидкостями. Мы здесь рассмотрим только последние случаи, поскольку к однофазному жидкостному потоку с точностью до абсолютных значений коэффициента приложимы закономерности и уравнения, выведенные для газофазных гетерогенно-каталитических процессов. Ограничимся наиболее часто встречающимися случаями двухфазного потока реагентов, в основном потока жидкость—газ. Качественно, без потери общности, можно принять за основу сумму явлений, имеющих место при газо-жидкостной реакции типа А+В— на твердом катализаторе, соответствующей таким реакциям, как гидрирование, алкилирование ароматики низшими олефинами и т. п. Газообразное вещество А для того, чтобы достигнуть твердой поверхности, на которой протекает реакция, должно сперва перейти из дисперсной (газовой) фазы в сплошную (жидкую) фазу, а затем раствориться в ней. После этого вещество А должно продиффундировать через систему капилляров в зерне катализатора и, наконец, сорбироваться на поверхности катализатора. Вещество В из жидкой фазы должно продиффундировать только через капилляры и затем сорбироваться на поверхности. Образовавшееся на поверхности вещество С должно десорбироваться и, продиффундировав через капилляры, выйти в объем. Таким образом, в многообразных жидкостных системах возникает принципиально новая стадия — стадия межфазной диффузии, частично или полностью определяющая общую скорость каталитического процесса. Скорость этой стадии зависит как от поверхности контакта между фазами, так и от величины эффективных коэффициентов диффузии компонентов реакции из одной фазы в другую. [c.76]

    Ртуть широко применяют при электрохимических исследованиях в нормальных элементах Кларка и Вестона обладающих стабильными значениями ЭДС, в электрометрах Липпмана, которые используются для изучения строения двойного электрического слоя, зависимости коэффициента трения от потенциала, межфазного поверхностного натяжения, смачиваемости и других явлений , в ртутносульфатных, ртутно-фосфатных, ртутно-окисных и ртутно-иодистых электродах сравнения , применяемых для измерения электродных потенциалов. [c.7]

    Одним нз важнейши.х факторов, влияющих на адгезионную прочность, являются остаточные напряжения, возникающие в адгезионных соединениях и концентрирующиеся на границе раздела фаз. Обусловленные усадочными явлениями в слое полимера, а также различием термических коэффициентов расширения компонентов, эти напряжения зависят от релаксационных процессов и определяются также характером межфазных связей. Последний момент, отражающий, по существу, влияние межфазных молекулярных сил на адгезионную прочность, изучен в настоящее время недостаточно. В одном из разделов монографии показано, что ограничение интенсивности адгезионного взаимодействия в зоне контакта двух полимеров позволяет реализовать амортизирующую роль межфазной поверхности в условиях действия высоких остаточных напряжений и тем самым повысить долговечность адгезионного соединения. [c.9]

    При изучении адгезионных явлений и влияния различных факторов на величину адгезии следует учитывать, что при получении склеек на границе раздела адгезив — субстрат могут образовываться межфазные (пограничные) слои. К такому выводу приходит ряд исследователей, например Дж. Бикерман [159], Ф. Рейнхарт [124], X. Данкен [23], Дж. Мурфей [160]. Влияние этих межфазных слоев на величину адгезии может быть в некоторых случаях весьма существенным. Поверхность почти любого вещества всегда отличается (по совокупности химических и физических свойств) от свойств вещества в объеме, и чем активнее эта поверхность, тем более вероятным становится возможность ее изменения. Причинами этого могут быть атмосферные условия, например, влияние кислорода воздуха на металлы и образование на них окисных пленок, влияние влаги воздуха на стекла и образование на их поверхности гелей кремневой кислоты, атакже воздействие механических обработок. Например, на шлифованной и полированной поверхности стекол глубина измененного слоя составляет — 30 мк, как это показывают измерения коэффициентов рефракции поверхностных и глубинных слоев стекла [32]. [c.196]

    Основным следствием смачивания в системах адгезив-субстрат является развитие процессов растекания, способствуюших образованию возможно более полного межфазного контакта. Растекание-явление спонтанного течения одной конденсированной фазы относительно другой, происходящее путем уменьшения свободной поверхностной энергии системы при отсутствии внешних воздействий. При натекании поверхность раздела увеличивается, при оттекании уменьшается. Согласно этому определению, величина введенного Харкинсом [157] коэффициента растекания х, пред-ставляюшего собой разность [c.41]

    Явление межфазовой турбулентности напротив повышает скорость массопереноса. Высказывается мнение [286], что увеличение скорости массопередачи в отсутствие ПАВ в большинстве систем можно объяснить образованием капиллярных волн на поверхности раздела фаз, источником которых может быть-эффект Марангони и естественная конвекция. Брюкнер [287] отмечает, что влияние межфазовой турбулентности на С1Корость массопередачи обычно объясняют двояким образом. Во-первых, как результат выравнивания градиента поверхностного натяжения, в результате чего, возрастает величина коэффициента массопередачи, во-вторых, как нарушение целостности, поверхности раздела, в результате чего возрастает поверхность массопередачи. Очевидно, на практике одновременно реализуются оба механизма. Явление межфазной турбулентности тесно связано с (процессом массопередачи. Экспериментально установлено, что ее появление или отсутствие зависит от направления массопередачи. [c.158]


Смотреть страницы где упоминается термин Коэффициент межфазных явлений: [c.38]    [c.170]    [c.240]    [c.243]    [c.363]    [c.308]    [c.194]    [c.575]    [c.169]    [c.244]    [c.244]   
Последние достижения в области жидкостной экстракции (1974) -- [ c.208 , c.373 , c.374 ]




ПОИСК





Смотрите так же термины и статьи:

Межфазные

Межфазные явления



© 2025 chem21.info Реклама на сайте