Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Межфазные явления

    Термодинамика межфазных явлений 245 [c.245]

    Термин межфазные явления по существу отражает широкий класс процессов на границах раздела фаз и в слоях, прилегающих к ним. Эти процессы определяют образование приведенных пленок и характер течения в них, а следовательно, и характеристики тепло- [c.204]

    Термодинамика межфазных явлений [c.245]

    Тарасов В. В. Межфазные явления и кинетика экстракции неорганических веществ Автореф. дис.. .. д-ра хим. наук. М. МХТИ им. Д. И. Менделеева, [c.147]


Рис. 6-10. Влияние массопереноса на межфазные явления [55] Рис. 6-10. <a href="/info/864356">Влияние массопереноса</a> на межфазные явления [55]
    При анализе электрохимических систем чаще всего используют одну из фундаментальных областей электрохимии — термодинамику — макроскопическую науку, позволяющую избежать описания на микроскопическом, молекулярном уровне поведения и свойств равновесных систем. Непосредственно измеряемые в эксперименте такие макроскопические параметры, как поверхностное натяжение, потенциал, заряд, емкость двойного слоя и другие являются макроскопическим откликом на молекулярные процессы, происходящие на межфазной границе. В равновесии они связаны между собой фундаментальными термодинамическими соотношениями, которые и представ в этой главе. Прежде чем перейти к краткому изложению существующих в настоящее время представлений о строении двойного электрического слоя (ДЭС), проведем термодинамический анализ межфазных явлений и предложим альтернативные пути термодинамического решения некоторых аспектов свойств межфазных границ вообще, а затем конкретизируем их на отдельных частных случаях. [c.245]

    Поверхность фосфолипидных бислоев обладает особенностью (отличающей ее от обычных коллоидных структур), которая в значительной степени осложняет теоретический анализ межфазных явлений в системе. Эта особенность связана с тем, что об-пасть полярных головок проницаема для молекул воды и ионов электролита [423, 424]. В этой области перемешаны как источники электрических полей, принадлежащих самой поверхности, так и заряды ионов и электрические диполи молекул воды. В таких системах трудно выделить четкую границу раздела между фосфолипидной фазой и электролитом. Поверхностные источники электрических полей, по существу, распределены в некотором приповерхностном слое. Термин поверхностные в данном случае означает, что они, обладая некоторой мобильностью в этом слое, сохраняют химическую связь с определенными группами липидной поверхности. Учет этой особенности дает воз- [c.149]


    Рассмотрены топологические структуры межфазных явлений в гетерофазных ФХС. Обсуждены особенности топологического описания теплового, механического и покомпонентного равновесия фаз. Дано преставление в виде топологических структур связи ряда моделей межфазного переноса двухпленочной модели, модели обновления поверхности контакта фаз, модели диффузионного пограничного слоя, модели развитой межфазной турбулентности. Показано, что диаграммы межфазного переноса с учетом условий равновесия в рамках существующих теорий структурно изоморфны и различаются между собой лишь значениями параметра проводимости и формой его зависимости от гидродинамической обстановки в системе. [c.182]

    В книге рассмотрены поверхностные явления расплавов на границе с твердым телом. Приведены результаты исследования растекания, смачивания, растворения, адгезии, а также межфазных явлений на границе твердое тело — расплав, которые широко привлекаются к решению теоретических вопросов спекания, пропитки, кристаллизации, модифицирования и других важных проблем. [c.2]

    Рассчитана на научных работников, материаловедов, инженеров, интересующихся вопросами межфазных явлений при высоких температурах и их практическим применением, а также на учащихся вузов, специализирующихся в данных направлениях. [c.2]

    Роль границ раздела и межфазных явлений еще более возрастает при уменьшении размеров компонентов композита. В частности, нано-метровая шкала приводит к необходимости создания таких неоднородных структур, в которых границы раздела мог т иметь атомный масштаб. В настоящее время имеется достаточно развитая технология, основанная на эпитаксиальном росте. Перспективным методом прецизионного синтеза твердых тел является метод молекулярного наслаивания, основная идея которого состоит в последовательном наращивании монослоев структурных единиц заданного химического состава. [c.169]

    Сумм Б.Д. Физика и химия межфазных явлений. - Тверь ТГУ, 1998. [c.184]

    МЕЖФАЗНЫЕ ЯВЛЕНИЯ В СИСТЕМАХ ПОЛИМЕР — ПОЛИМЕР И ОБРАЗОВАНИЕ ПЕРЕХОДНЫХ СЛОЕВ [c.200]

    Прп обсуждении наблюдений Томсона уже упоминалось, что межфазные явления могут оказывать преимущественное влияние либо на коэффициент массопередачи, либо на поверхность фазового контакта. Первый эффект значителен только в том случае, если глубина фаз существенно больше толщины приведенных пленок, движущихся вместе с поверхностью раздела фаз. Это явление п будет обсуждаться вначале. [c.208]

    МЕЖФАЗНЫЕ ЯВЛЕНИЯ II ПОВЕРХНОСТЬ РАЗДЕЛА ФАЗ. Общие положения [c.248]

    Следует упомянуть, что наблюдаемое в некоторых случаях сильное возрастание массопередачи может быть также вызвано межфазными явлениями. [c.342]

    Специфика межфазных явлений в системах с полимерными наполнителями и в смесях полимеров определяется природой обоих компонентов. В настоящее время установлено, что термодинамическая совместимость у большинства полимеров отсутствует [371, 387]. Как правило, невозможно также образование общей кристаллической решетки, т. е. совместных кристаллов [388—391]. Однако можно говорить о совместимости полимеров в морфологическом плане, понимая под этим образование совместных надмолекулярных структур и отсутствие четких границ раздела между элементами надмолекулярного порядка. Это предполагает существование переходного слоя между двумя компонентами. Природа и структура этого слоя имеют важное значение для понимания свойств полимерных композиций. Переходный слой в смесях полимеров отличается от граничного слоя или поверхностного слоя на неорганическом наполнителе тем, что он может быть образован одновременно двумя компонентами вследствие взаимной диффузии на границе раздела фаз [392, 393]. Поэтому такой слой по своим свойствам отличается от составляющих компонентов. В таких межфазных областях под влиянием второго компонента смеси происходит изменение конформаций макромолекул по сравнению с их конформациями в блочных полимерах [377, 394, 395]. Наряду с диффузией причиной образования переходного слоя может быть также и обычная адсорбция одного компонента на поверхности другого [396]. [c.200]

    Роль межфазных явлений при кристаллизации в дисперсионной полимерной среде была выявлена при исследовании композиции на основе несовместимых кристаллизующихся полимеров, температурные интервалы кристаллизации и плавления которых не совпадают [450]. В этом случае естественно было ожидать влияния размытой [c.234]

    Перечисленные четыре типа микрогетерогенности характерны для полимерных систем, наполненных минеральными наполнителями и для полимерных смесей — двухфазных систем с непрерывным распределением обоих компонентов или систем с полимерными наполнителями. Однако если в первом случае указанные типы микрогетерогенности возникают вследствие межфазных явлений только в полимере-матрице, то во втором случае они типичны и для полимера-наполнителя, и для переходного слоя между двумя полимерными, компонентами. [c.285]


    Топологйческйе структуры межфазных явлений, происходящих в гетерофазных физико-химических системах [c.143]

    В курсе коллоидной химии рассматривается общая теория двойного электрического слоя и электрических межфазных явлений, значение которых выходит далеко за рамки данной науки. Кроме ионообменной адсорбции, электрокинетических явлении, стабилизации и коагуляции дисперсных систем и других процессов, изучаемых в данном курсе, электрические межфазные явлеиия в значительной мере определяют электродные процессы (электрохимия), процессы массопереноса через межфазиую поверхность, каталитические, мембранные, биологические процессы, обусловливают свойства полупроводниковых и других материалов. [c.44]

    Из-за сложности протекающих процессов рассматриваемые в данном разделе межфазные явления до сих пор недостаточно изучены. Поэтому основное внимание будет уделено системам, в которых пмеется хотя бы одна жидкая фаза, что позволяет обеспечивать равновесные обратимые условия и соответственно использовать термодинамические соотноиюния. [c.64]

    Рис. 14.2 иллюстрирует одно из таких явлений - возникновение диссипативных структур в полимерной матрице вокруг заключенных в ней волокон. При охлаждении расплава данного термопластичного полимера в зонах, удаленных от волокна, происходит кристаллообразование, причем морфология образующихся кристаллов (солнцеобразные сферолиты, растущие радиально из точек зародышеобразования) типична для многих полимеров. Кристаллообразование же вокруг волокна формирует оболочку нитевидных кристаллов. Такой частично кристаллический полимер можно рассматривать как ко.мпозит, в котором упрочняющими элементами являются кристаллические области, а матрицей - области с меньшей упорядоченностью. Эти примеры показывают важность учета процессов самоорганизации и. межфазных явлений тфи проектировании современных композитов. [c.169]

    При определенных условиях, в системах жидкость — жидкость, даже в состоянии покоя, может возникнуть спонтанная межфазная оивокция достаточной интенсивности, приводящая в слоях в непо- родственной близости к поверхности ра.здела фаз к состоянию, напо-зшпающему турбулентность и, таким образом, обладающему некоторыми чертами свойственными межфазным явлениям, связанным с вынужденной конвекцией. [c.209]

    Исследовалась массопередача уксусной кислоты в системах этиленгликоль — этилацетат, вода — изобутиловьп спирт и вода — этилацетат. Прп определенной величине возмущений наблюдались псевдостационарные полигональные конвективные ячейки. Этот тип межфазных явлений был назван микромасштабным межфазным движением в отличие от макромасштабного, под которым Беккер ы др. понимали движение, обусловленное потоками и геометрией межфазной новерхности. Средняя площадь ячейки возрастает во времени, причем ячейки большого размера растут за счет меньших. Для систем гликоль — ацетат и вода — изобутиловый эфир соотношение между средней площадью и временем было найдено линейным при массопередаче из гликоля или изобутилового спирта. Это означает, что линейный размер ячейки нропорционален корню квадратному из времени. Определяя глубину проникновения в случае молекулярной диффузии как было показано, что поря- [c.236]

    Для систем минеральное масло — пропиоиовая кислота — вода ] ольден [36] нашел, что примерно 35% перенесенного вещества в период образования и разрушения капель может быть отнесено а счет межфазных явлений (подробнее см. гл. 6). [c.333]

    Шервуд и Вей [16] и Серль и Гордон [17] провели эксперименты с мгновенными реакциями в сосудах с перемешиванием, однако из-за межфазной турбулентности не смогли теоретически обосновать полученные результаты. Чтобы изучить и проанализировать одномерную, первоначально неподвижную систему в процессе диффузии, а также определить влияние межфазных явлений на скорость переноса и величину зоны реакции, Хо и Ранц использовали оптический метод, в том числе шлировую фотографию. Они изучали необратимую реакцию второго порядка и дали теоретический анализ положения зоны реакции. Эксперименты с мгновенными реакциями в одномерных неподвижных системах показали, что исчезающе тонкая реакционная зона перемещается внутрь той или иной фазы, подтверждая теоретические предсказания в отсутствие межфазной турбулентности перемещение зоны соответствует теоретическим предположениям (для этого случая теория предсказывает произвольное увеличение скорости переноса, вызванного реакцией). При наличии межфазной турбулентности зона реакции движется быстрее, чем предсказано теорией. [c.364]

    Следуя обобщению Абрамзона и Когана [38], реакция почти полностью протекает в водной фазе, если в реакции в системе жидкость — жидкость принимают участие ионные и неионные реагенты. На этом основании Мансури и Мадден приняли, что процесс восстановления происходит в водной фазе. Затем они предложили две возможные модели для объяснения своих результатов. Одна из них включает массопередачу, сопровождаемую быстрой реакцией псевдопервого порядка, согласно другой,— процесс определяется массопередачей. Последняя кажется более вероятной. С другой стороны было выведено уравнение скорости процесса, отражающее прямую пропорциональную зависимость между скоростью восстановления и поверхностью контакта фаз. Затем они предложили использовать этот метод для измерения поверхности контакта фаз, однако это предложение весьма сомнительно. Прямая пропорциональность между скоростью восстановления и межфазной поверхностью требует, чтобы коэффициент массопередачи был постоянным. Сложная зависимость коэффициента от межфазных явлений и вза- [c.373]

    С этой точки зрения существенный интерес представляет определение поверхностного натяжения полимер-полимерных композиций. В работе [399] было исследовано поверхностное натяжение смесей полистирола (мол. масса 200 ООО) и полиэтиленгликольадипината (мол. масса 2000), полученных из раствора в общем растворителе. Поверхностное натяжение определяли по краевому углу смачивания методом Эльтона [400]. На рис. V. 3 приведена зависимость поверхностного натяжения у смеси от состава. Характерной особенностью этой зависимости является резкое изменение у при малых добавках одного из компонентов и незначительные изменения в области средних составов (20—70%). Эти данные показывают, что в исследованной области составов происходит обогащение поверхностного слоя композиции поверхностно-активным компонентом. Далее, однако, рост поверхностного натяжения невелик, несмотря на повышение содержания ПЭГА до 70%. Это объясняется тем, что происходит разрыхление поверхностного слоя смеси, которое приводит к снижению поверхностной плотности, а следовательно, и поверхностного натяжения, компенсируя его рост, обусловленный увеличением содержания ПЭГА. Вывод об изменении плотности был сделан также и на основании определения величины удерживаемого объема растворителя — гептана методом газовой хроматографии. Тем же методом был определен избыточный изобарно-изотермический потенциал смешения для смесей разных составов (рис. V. 4). Как видно, максимум несовместимости соответствует 50%-ному содержанию ПЭГА. Эти данные указывают на необходимость учета еще одной особенности межфазных явлений в полимерных смесях — возможности (вследствие [c.201]


Библиография для Межфазные явления: [c.222]    [c.83]    [c.82]   
Смотреть страницы где упоминается термин Межфазные явления: [c.52]    [c.204]    [c.221]    [c.38]   
Смотреть главы в:

Жидкостная экстракция в химической промышленности -> Межфазные явления




ПОИСК





Смотрите так же термины и статьи:

И. И. Рабинович. Межфазные явления в двухкомпонентных жидких системах

Коэффициент межфазных явлений

Межфазные

Межфазные явления в системах полимер — полимер и образование переходных слоев

Межфазные явления в смесях полимеров

Межфазные явления и поверхность раздела фаз

Межфазные явления п коэффициент массопередачи

Межфазные явления. Г. Савистовский

Термодинамика межфазных явлений

Электрические явления на межфазных границах



© 2025 chem21.info Реклама на сайте