Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика процессов уравнения скорости

    VII-9. Кинетика синтеза аммиака исследовалась Темкиным и Пыжовым . Суммарная скорость процесса определяется скоростью адсорбции азота. При выводе кинетического уравнения было использовано подтвержденное экспериментально уравнение изотермы адсорбции в логарифмическом виде  [c.237]

    Особенности кинетики реакций на неоднородной поверхности не исчерпываются, однако, простым изменением формы изотермы адсорбции. Поверхность, неоднородная по теплоте адсорбции, должна быть неоднородна и кинетически. Будем считать, следуя Рогинскому [14], что в ходе процесса зависимость скорости реакции от концентраций реагентов остается неизменной на всех участках и температурная зависимость скорости реакции по-прежнему описывается уравнением Аррениуса. При этом величина предэкспонента постоянна на всех участках, а значение энергии активации распределено по некоторому закону. Все эти допущения являются дискуссионными, но в первом приближении они достаточны, так как главным эффектом действия катализатора обычно бывает именно изменение энергии активации реакции. [c.86]


    Авторы работы [8] пришли к выводу, что углекислота оказывает определяющее влияние на кинетику процесса и скорость реакции описывается уравнением [c.59]

    Задача исследования кинетики процесса состоит в определении зависимости скоростей образования ключевых веществ Г (или скоростей реакции) от концентраций реагентов и температуры. Кинетика становится известной, когда найдены такие функции г,-, что интегральные кривые уравнения (Х.1) достаточно мало отличаются от кривых изменения концентраций реагентов во времени (или по длине реактора), найденных экспериментально. Подробнее вопросы расшифровки экспериментальных кинетических данных изложены в главе XI. [c.408]

    В очень тонких образцах пора очень коротка, и при низких температурах, когда скорость реакции достаточно медленна, реагирующий газ диффундирует до конца поры, в этом случае наблюдаемая реакция будет нулевого порядка. Образцы 5 и 6 приготовлены специально для наблюдения этого процесса. Из приведенных в табл. 2 данных видно, что реакция в этих образцах очень близка к нулевому порядку. К сожалению, реакция с этими малыми образцами настолько медленна, что ее скорость измерить очень трудно. Однако, когда температура значительно повышается и скорость реакции может быть определена, образцы будут слишком толстыми, чтобы можно было описать кинетику процесса уравнением (1). [c.193]

    Рассмотрим химическую реакцию (5.44). В соответствии с основным постулатом химической кинетики [61 уравнение скорости реакции (5.44) для случая, когда диффузия не тормозит процесс, имеет вид (5.45). [c.164]

    В формальной кинетике рассматривается зависимость скорости реакции от концентрации реагирующих веществ. Она основана на ряде положений, из которых наиболее важными являются закон химической кинетики, принцип независимости протекания химических реакций в системе и уравнение материального баланса реагентов. Закономерности протекания элементарного химического акта и влияние ИХ на общую скорость процесса в формальной кинетике не рассматриваются. [c.533]

    В области малых плотностей тока выделение кислорода на никеле (см. рис. 74, кривая I, нижний участок) характеризуется наклоном, отвечающим величине 6 , которую трудно согласовать с предположением о замедленности разряда ионов гидроксила. На этом участке поляризационной кривой кинетика процесса определяется скоростью стадий 1,3 П,3 или стадией взаимодействия атомарного кислорода (образующегося по уравнению (665)) с окислом никеля  [c.388]


    При отсутствии уравнения кривой кинетики процесса определение скорости реакции при разных значениях концентрации производят графическим дифференцированием. [c.44]

    Для вывода математической зависимости между степенью зашиты и плотностью защитного тока (или смещением потенциала в отрицательную сторону) необходимо воспользоваться уравнениями кинетики электродных процессов. Основными электрохимическими реакциями на. корродирующем и подвергающемся катодной защите металле являются ионизация металла (анодный процесс), электровосстановление кислорода, разряд ионов водорода и металла (катодные процессы), уравнения скоростей которых приведены в табл. 7. Их использование оказывается затруднительным, если базироваться на теории многоэлектродных систем, поскольку в практических условиях коррозии и защиты распределение поверхности на катодные и анодные участки, а также распределение внешнего тока по гетерогенной поверхности остается неопределенным. Вместе с тем вывод искомого соотношения оказывается возможным на базе гомогенно-электрохимических представлений о поведении металлов в условиях стационарной коррозии и поляризации внешним током. [c.21]

    При проведении сложных реакций, кинетика которых описывается не одним уравнением скорости, к реактору предъявляются взаимоисключающие требования — минимальный размер и максимальный выход целевого продукта. На практике ввиду сложности выделения основного продукта из реакционной смеси и высокой стоимости исходных веществ (по сравнению с расходами на амортизацию оборудования) определяющим фактором является обычно избирательность процесса. [c.245]

    Следует отметить, что стехиометрическое уравнение не дает возможности описать кинетику процесса. Для вычисления скорости реакции видоизменим формулу (I, 10) [c.13]

    Некоторые химические процессы представляют собой простые одностадийные реакции, в которых участвуют одна, две или редко три молекулы. Гораздо большее число процессов является комбинациями нескольких таких простых реакций. Одна из целей химической кинетики заключается в том, чтобы установить, каков истинный молекулярный механизм сложного процесса. Почему эмпирические уравнения скорости реакций образования HI, НВг и НС1 настолько отличаются друг от друга, если сами эти [c.363]

    Все сказанное выше позволяет получить математические модели гомогенных и гетерогенных химических процессов, если выразить V в виде функций концентраций, температур и давления, пользуясь методами химической кинетики- В общем случав вид уравнения скорости /-той простой гомогенной некаталитической реакции м , имеет вид  [c.71]

    Если определяющим является физический этап, то скорость процесса описывают не уравнениями химической кинетики, а уравнениями кинетики массопереноса или сорбции. [c.171]

    Хотя термодинамика дает возможность определить, насколько изучаемая система отдалена от состояния равновесия [числитель правой части уравнения (1)1, однако она в большинстве случаев не дает ответа на весьма важный и с теоретической, и с практической стороны вопрос с какой скоростью будет протекать термодинамически возможный коррозионный процесс Рассмотрением этого вопроса, а также установлением влияния различных факторов на скорость коррозии и характер коррозионного разрушения металлов занимается кинетика (учение о скоростях) коррозионных процессов. [c.11]

    Степени заполнения поверхности, близкие к единице, чне достигаются, если процесс лимитируется скоростью адсорбции исходного вещества. Даже если равновесие адсор.бции нацело смещено в сторону адсорбции реагента Ь = оо), но скорость адсорбции сравнима со скоростью реакции, кинетика процесса определяется уравнением лангмюровского типа  [c.85]

    В физико-химических процессах, происходящих в гетерогенной системе газ — жидкость, диффузия является физическим этапом, определяющим в большинстве случаев геометрические размеры реакторов. Реакторы для проведения процессов в системе газ — жидкость конструируются, главным образом, по принципу абсорбционных аппаратов, имеют большой объем, но относительно просты и легки в эксплуатации. Промышленные реакторы для систем газ — жидкость являются реакторами непрерывного действия реже используются реакторы полупериодического действия, имеющие непрерывное питание газом. При изучении процессов абсорбции, сопровождающихся химической реакцией (хемосорбция), необходимо одновременно рассматривать уравнения диффузии и химической кинетики, так как общая скорость процесса определяется скоростью перемещения реагентов к месту реакции и скоростью химической реакции. [c.137]


    Химическая кинетика, как и термодинамика, является теоретической базой химической технологии. Поэтому состояние и достижения науки в области кинетики и катализа в значительной степени определяют технический уровень производства в химической промышленности. Для разработки высокоэффективных реакторов и процессов необходимо прежде всего найти кинетические уравнения, описывающие процесс, константы скоростей реакций и зависимость их от различных факторов. Нужны высокоэффективные селективные катализаторы. Решение этих задач осуществляется на базе законов химической кинетики. На современном этапе развития теории химической кинетики центральной является проблема зависимости реакционных свойств химической системы от строения атомов и молекул [c.521]

    Строят график зависимости —от / (С). Если получают прямую, проходящую через начало координат, то это значит, что уравнение скорости соответствует экспериментальным данным, а механизм реакции удовлетворителен настолько, насколько он подтверждается кинетикой процесса (рис. ПМ8). [c.80]

    В области малых плотностей тока выделение кислорода на ни- е ю (см. рнс. 20.1, кривая 1, нижний участок) наклон кривой Ь равен 0, что трудно согласовать с предположением о замедленности разряда 1 идроксил-ионов. На этом участке поляризациотиюй кривой кинетика процесса определяется скоростью стадий I, 3 II, 3 или стадией взаимодействия атомарного кислорода [образующегося но уравнению (20.8)] с оксидом никеля  [c.426]

    В зависимости от вида изотермы (при константе обмена, отличной от единицы) наблюдается размывание зоны, которое особенно заметно в условиях неравновесной хроматографии. В связи с этим значения ординат выходной кривой зависят не только от количества введенного в колонку вещества, но и от кинетики процесса. Однако скорость движения максимума концентрации зоны (максимума выходной кривой) хорошо описывается уравнениями равновесной хроматографии. Выражение для можно записать через Vmax следующим образом  [c.126]

    ДуТатематическая модель химического процесса должна включать в себя уравнения, отражаюш ие закономерности протекания химических реакций, которые устанавливаются на основе экспериментального изучения процесса. Найденные закономерности представляют в виде уравнений кинетики процесса, выражающих скорости реакций при данном химическом превращении. [c.11]

    Процесс встраивания молекул в кристалл идет с большой скоростью, и кинетика процесса определяется скоростью подвода вещества к поверхрюсти кристалла. В этом случае, в соответствии с законом Щукарева, скорость процесса кристаллизации определится уравнением [c.357]

    Эффектом неоднородности могут быть объяснены все основные закономерности реального адсорбированного слоя характер адсорбционного равновесия (уравнения изотерм адсорбции), кинетика адсорбционных процессов (уравнения скорости адсорбции и десорбции), характер изменений величин теплбт адсорбции и энергии активации. Кроме того, с тех же позиций могут быть объяснены наблюдаемые на опыте закономерности кинетики каталитических процессов, а также, явления спекания и от- [c.84]

    В условиях синтеза грег-бутилкумилперекнсь является устойчивым соединением, в то время как грег-бутилгидроперекись частично распадается, поэтому кривые расхода гидроперекиси и а-метилстирола в процессе реакции несколько расходятся. Серная кислота в катализаторном слое несколько разбавляется побочными продуктами неперекисного характера. Кинетические кривые расхода трег-бутилгидроперекиси до глубины превраи ения 50—60% при различных температурах в координатах (С о — С)/С оС от времени представляют практически прямые линии, что указывает на соответствие кинетики процесса уравнению реакции второго порядка. Значения константы скорости второго порядка (йг) при концентрации Н2504 (в виде 65%-ной серной кислоты) 0,633 моль л при 20, 30, 40 и 50° С равны соответственно 1,55, 4,25, 9,08 и 14,72 10 л моль сек К Энергия активации процесса 14 ккал моль. Как и в случае синтеза грег-бутилперекиси, константа скорости реакции зависит от концентрации серной кислоты в реакционной массе. [c.312]

    Непосредственное экспериментальное изучение кинетики тон или иной химической реакции только в исключительных случаях позволяет отнести ее к одной из указанных групп. Это удается сделать только для так называемых простык реакций, протекающих в одну стадию, уравнение которой совпадает со стехиометрическим уравнением реакции в целом (например, разложение и синтез иодистого водорода, разложение двуокиси азота и нитрозилхлорида и некоторые другие). Большинство же химических реакций является совокупностью нескольких последовательных (а иногда и параллельных) элементарных реакций, каждая из которых может принадлежать к любой из указан-ных выше кинетических групп. Это обстоятельство неизбежно осложняет кинетику процесса в целом, Б простейшем случае, f если одна из элементарных реакций протекает значительно Т> медленнее остальных, наблюдаемый кинетический закон будет соответствовать именно этой реакции. Если же скорости от-дельных стадий сравнимы, экспериментальная кинетика может быть еще более осложнена. [c.17]

    При химической группировке схема процесса устанавливается на основе изучения кинетики реакций, что позволяет выявить промежуточные и конечные продукты. В случае технологической группировки обязательна проверка теоретически обоснованных схем, например подтверждением очевидных для выбранной схемы соотношений. Этот метод не требует знания кинетических уравнений скоростей отдельных стадий. Если число реагирующих веществ больше числа реакций, можно проверить постоянство некоторых стехиометрических коэффициентов V, входящих в уравнения реакций 21IV,-А,—. [c.101]

    При протекании каталитической реакции через промежуточные комплексы влияние растворителя будет обусловлено его снособ-ностью образовывать комплексы с активными атомами поверхности катализатора. Если растворитель обладает высокой электронной донорно-акцепторной способностью или высокой л-электронной плотностью, то он сам будет входить в сферу лигандов комплекса и может понижать активность катализатора. Наоборот, достаточно инертные, неполярные растворптелп типа парафинов и циклопарафинов будут мало влиять на механизм комплексообразованпя. На кинетике процесса все это будет отражаться в виде ускорения или замедления скорости реакции при замене растворителя или усложнения формального уравнения кинетики вследствие изменения концентрации пли характера растворителя по ходу реакции. [c.50]

    При обсуждении влияния различных факторов на состав смеси олефинов, находящейся в фотостационарном состоянии, и на скорость достижения этого i) тoяния интерпретация экспериментальных результатов основывается на анализе скоростей элементарных стадий. При формальном описании элементарных фотохимических процессов используют уравнения скоростей моно- и бимолекулярных реакций. Поскольку кинетика фотохимической изомеризации ранее не рассматривалась подробно, приведем характеризующие ее кинетические уравнения. [c.75]

    Если скорость химической реакции на поверхности катализатора достаточно велика, то адсорбционное равновесие не достигается и степени заполнения поверхности молекулами реагентов нельзя определить из уравнения изотермы адсорбции. В предельном случае, когда адсорбция одного из реагентов является наиболее медленной стадией, скорость процесса лимитируется скоростью адсорбции этого реагента, и можно говорить о протекании реакции в адсорбционной области. Скорость адсорбции определяется константой скорости адсорбции и концентрацией сорбируемого вещества следовательно, кинетика процесса в адсорбционной области формально следует уравнению реакции первого порядка. Поэтому различить кинетическую и адсорбционную области только по кинетическим измерениям нельзя и при необходимости следует ставить специальные эксперименты по измерению скорости адсорбции или применять другие прямые методы исследования, например, спектроскопию адсорбированных молекул. [c.84]

    Отметим, что исследование кинетики сложных каталитических реакций чаще всего может дать основания лишь для неоднозначных соображений о ее механизме, но, не будучи связано с более детальными физическими и физико-химическими исследованиями, не может выявить характера элементарных стадий процесса. С другой стороны, знание кинетики реакций, какой бы механизм ни лежал в их основе, является необходимой предпосылкой всех расчетов промышленных процессов. Для расчетных целей безразлично, ootBOT TByeT ли форма кинетических уравнений детальному механизму каталитического процесса. Зависимость скорости реакций от концентраций реагентов и температуры часто представляют (в некоторой ограниченной области) выражениями типа (П.6) — (П.8) с эмпирическими коэффициентами при этом в формулу (II.8) должны также входить концентрации веществ, тормозящих реакцию, с отрицательными порядками a . Для приближенного формального описания кинетики реакций в широком интервале изменения значений переменных более пригодны уравнения лангмюровского типа. [c.96]

    Решение уравнения (111.13) позволяет представить поток вещества на активную поверхность в виде (111.12) с эффективной толщиной диффузионного слоя б, зависящей от скорости и физических свойств вещества. Кроме того, величина б оказывается зависящей и от скорости гетерогенной реакции [12]. Это связано с тем, что при конечной скорости" реакции концентрация реагирующего вещества изменяется вдоль неравнодостунной. активной поверхности, что, в свою очередь, влияет на условия массопереноса. Только в том случае, когда гетерогенная реакция протекает практически мгновенно, приповерхностная концентрация будет повсюду равна нулю, если реакция необратима, или некоторой равновесной концентрации в случае обратимой реакции при этом величина б является вполне определенной и не зависит от кинетики процесса. [c.104]

    Из уравнения (ХХУ.20) видно прогрессивное нарастание концентрации свободных радикалов, а следовательно, и скорости цепной реакции. Через каждые 1/ф с концентрация свободных радикалов, а следовательно, ь скорость цепной реакции возрастает в е раз и за время нескольких интервалов 1/ф практически полное отсутствие реакции сменяется взрывным протеканием процессов. Для разветвленных цепных реакций характерно наличие двух резко различающихся режимов протекания процесса. Если скорость обрыва больше скорости разветвления цепей, то обеспечивается стационарный режим процесса, причем скорость процесса неизмеримо мала. Если скорость обрыва меньше скорости разветвления, то развивается нестационарный автоускоряющий-ся процесс, заканчивающийся цепным воспламенением смеси. Переход от условия / к условию / > <7 может произойти при незначительном изменении одно] о из параметров, определяющих скорости обрыва или разветвления цепей давления, температуры, состава смеси, размера реакционного сосуда, состояния стенок сосуда. Таким образом, незначительное изменение одного из параметров может вызвать переход эт неизмеримо медленной стационарной реакции к быстрому взрывному процессу или наоборот. Такие явления в химической кинетике назьЕваются предельными или критическими явлениями. Значение парг1метра, при котором происходит переход от одного режима к другому, называется пределом воспламенения. [c.390]

    Обработкой экспериментальных данных по кинетике процессов найдены константы реакций синтеза и разложения пантогама, получены уравнения скоростей образования и роста кристаллов. [c.163]

    Это предположение было развито Хоугеном и Уотсоном, которые вывели зависимости для механизмов кинетики и доказали возможность использования полученных уравнений скорости для проектирования промышленных реакторов. Система кинетических уравнений такого типа, называемая обычно системой Лэнгмюра — Хиншель-вуда, дает в определенных случаях очень хорошие результаты и имеет ряд преимуществ, из которых наиболее значительными являются достоверность в широких пределах изменения условий проведения процесса и наглядность развития явлений на поверхности катализатора. При этом существует также возможность сопоставления гипотез механизма химической реакции с гипотезами механизма кинетики. [c.215]

    Уравнения Хоугена — Уотсона. Метод Хиншельвуда для определения кинетики контактно-каталитических реакций был расширен Хоугеном и Уотсоном и в таком виде довольно часто используется в настоящее время. Хоуген и Уотсон вывели простые уравнения как для скорости адсорбции компонентов, которые участвуют в реакции, так и для скорости реакции, протекающей на поверхности катализатора. Объединив уравнение, определяющее скорость самого медленного этапа, с уравнениями, выражающими равновесия остальных этапов, и с уравнением баланса активных центров на катализаторе, получим уравнение скорости каталитического процесса. Такое уравнение может быть записано в общей форме следующим образом  [c.218]


Смотреть страницы где упоминается термин Кинетика процессов уравнения скорости: [c.11]    [c.248]    [c.247]    [c.301]    [c.333]    [c.6]    [c.7]    [c.552]    [c.72]    [c.50]    [c.76]   
Синтез углеводородов из окиси углерода и водорода (1954) -- [ c.65 , c.70 , c.76 , c.78 , c.448 , c.450 , c.468 , c.469 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетика процессов

Процесс скорость

Уравнение кинетики

Уравнение процесса

Уравнение скорости



© 2025 chem21.info Реклама на сайте