Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузионная кинетика обрыва цепей

    Кинетика цепной химической реакции, ее скорость и средняя длина цепи, естественно, находятся в прямой связи с условиями протекания реакции. Здесь мы ограничимся случаем, когда цепи зарождаются в объеме, но обрыв цепей происходит как в объеме, так и на поверхности. При этом будем считать, что объемный об]1ыв цепей следует линейному закону и что реакция протекает в диффузионной области. В этом случае для плоского реакционного сосуда (одномерная задача) при справедливом для диффузионной области равенстве нулю коицептрации активных центров у поверхности реакционного сосуда средняя длина цепи [c.209]


    Скорость стационарной цепной реакции [232]. Кинетика цепной химической реакции, ее скорость и средняя длина цепи, естественно, находятся в прямой связи с условиями протекания реакции и в первую очередь с условиями зарождения и обрыва цепей. Здесь мы рассмотрим вопрос о скорости стационарной реакции, ограничившись случаем, когда цепи зарождаются в объеме, но допуская обрыв цепей как в объеме, так и на поверхности. При этом будем считать, что объемный обрыв цепей следует линейному закону и что реакция протекает в диффузионной области. В этом случае для плоского реакционного сосуда (одномерная задача) при установившемся режиме простой цепной реакции (стационарная реакция) выполняется следующее дифференциальное уравнение  [c.497]

    Как уже указывалось, изучение кинетики стационарной цепной реакции при известной скорости зарождения цепей в случае линейного обрыва цепей дает возможность определить отношение констант скоростей продолжения и обрыЕ1а цепей. Если обрыв цепей происходит в диффузионной области и константа скорости обрыва цепей может быть вычислена, из этих данных может быть найдена константа скорости продолжения цепи. [c.296]

    Кинетика П.-э. может быть исследована темп же. методами, что и пре-эффекта. Причем, поскольку П.-э. всегда более длителен, чем про-эффект, нсследовать 1 и-нетику ност-иолимеризации легче, особенно нри глубоких стенепях превращения, когда обрыв цепи затруднен вследствие диффузионного механиз.ма это реакции и длительность П.-э. довольно велика. [c.81]

    Глава VII Цепные реакции дополнена рассмотрением роли возбужденных молекул в цепных реакциях, толуольного метода определения энергии связи в органических молекулах, количественных зависимостей от концентрации и температуры нижнего и верхнего пределов самовоспламенения написан новый 3 Обрыв цепи . Большим изменениям подверглась глава VIII Фотохимия , которая дополнена кинетическими расчетами квантовых выходов и 4—7. Глава IX Химическое действие излучений большой энергии включает новый дополнительный материал по принципам дозиметрии, радиолизу воды, новый текст 6. Сильно изменена глава X Каталитические реакции . Особенно большие изменения и дополнения сделаны в разделе Гомогенные каталитические реакции , расширен параграф, посвященный разложению перекиси водорода, кислотноосновным реакциям и их классификации. В разделе Гетерогенные каталитические реакции более подробно рассмотрены переходы реакций из кинетических областей протекания в диффузионные области, дополнен 16. В главе XI Теория активных центров в катализе написаны новые 4, 11, расширено изложение электронного механизма адсорбции и химических реакций на полупроводниках. В главе XIV Применение меченых атомов в химической кинетике написан новый 4 Изотопные кинетические эффекты . [c.13]


    Для описания диффузионно-контролируемых реакций второго порядка может быть использована приближенная модель Рабиновича. В работах [20, 21] она была иапользована для количественного описания кинетики полимеризации виниловых мономеров. Однако авторами был получен вывод, что обрыв цепи должен стать диффуэионно-контролируемым при вязкости системы 0,2 Па-с, что противоречит полученным в этой работе экспериментальным данным.  [c.304]

    До сих пор мы говорили о механизме процесса полимеризации, протекающего в кинетической области в изотермических условиях. В этом случае перечисленные выше элементарные реакции (ишщии-рование, рост, передача и обрыв цепи) будут определять все кинетические закономерности процесса полимеризации. Однако в реальной реакционной системе физические условия будут резко изменяться в течение процесса по мере накопления высокомолекулярных продуктов. Представим себе радикальную полимеризацию жидкого винилового мономера, например стирола. Вязкость жидкого стирола при 50 °С составит 0,5 спз. Образующийся полимер будет растворяться в мономере, и к концу процесса при конверсии 80—90% реакционная смесь будет представлять собой концентрированный раствор полимера, вязкость которого может достигать 10 —10 спа. Столь сильное возрастание вязкости, безусловно, окажет влияние на характер массопередачи и теплопередачи, а эти факторы э свою очередь должны повлиять на кинетику процесса. Даже в том случае, когда полимер нерастворим в мономере (как, например, при полимери-захщи акрилонитрила), накопление твердой фазы может привести К созданию диффузионных затруднений для макрорадикалов и молекул мономера, а следовательно, повлияет на кинетику процесса. [c.54]

    Экспериментальные данные по кинетике начального периода сополимеризации в 7%-х (мае.) водных растворах МАА и метакрилата натрия, взятых в различных соотношениях, удовлетворительно описываются [327] известным уравнением [308, с. 377], которое предложили Мелвилл, Нобл и Уотсон. Согласно данному уравнению, обрыв контролируется химическими реакциями, а диффузионные процессы не учитываются. Вместе с тем, именно ввиду влияния диффузии на закономерности обрыва цепи указанное уравнение очень часто оказывается неприменимым к описанию кинетики сополимеризации. Предположено [327], что возможность использования уравнения при сополимеризации МАА и метакрилата натрия связана с тем, что в данной системе константы скоростей реакций обрыва (за счет взаимодействия одинаковых и различных радикалов) близки между собой [243]. В системе МАА - метакрилат натрия кривая зависимости начальной скорости сополимеризации от соотношения между мономерами проходит через слабо выраженный максимум, что при относительной близости констант скоростей обрыва определяется предпочтительностью перекрестного роста по сравнению с ростом за счет любой гомополимеризации (г1 и Г2< 1 [312]). Для системы АА - АК (вода, pH = 4,6) также наблюдается превышение скоростью сополимеризации скоростей гомополимеризации обоих мономеров [328]. [c.97]


Смотреть главы в:

Теория радикальной полимеризации -> Диффузионная кинетика обрыва цепей




ПОИСК





Смотрите так же термины и статьи:

Кинетика диффузионная

Обрыв цепи



© 2025 chem21.info Реклама на сайте