Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водная очистка газов от двуокиси углерода под давлением

    Перед отмывкой окиси углерода из конвертированного газа жидким азотом при низких температурах необходимо предварительное сжатие газа и очистка его от двуокиси углерода и окислов азота. Двуокись углерода легко сжижается (критическая температура 31,1 °С) и при температуре ниже —70 °С затвердевает. Поэтому до охлаждения газовой смеси необходимо удалить из нее СО2, чтобы не происходила забивка аппаратуры твердой двуокисью углерода. При больших концентрациях ее удаляют сначала водой под давлением или раствором моноэтаноламина, а затем— водным раствором щелочи (стр. 218 сл.). До щелочной очистки из конвертированного газа необходимо удалить окислы азота, которые могут образоваться при высокой температуре в конверторе метана. Присутствие окислов азота в аппаратах низкотемпературного блока отмывки газа жидким азотом весьма нежелательно и опасно, так как окислы азота могут образовывать с органическими веществами, содержащимися в газовой смеси, различные нитросоединения, способные самопроизвольно разлагаться со взрывом.. [c.259]


    Хотя сероводород значительно лучше растворяется в воде, чем двуокись углерода, водная абсорбция для извлечения сероводорода из газовых, потоков не нашла широкого промышленного применения. Вероятно, это объясняется главным образом тем, что парциальное давление сероводорода в газе обычно недостаточно велико для эффективного осуществления процесса водной абсорбции. Использованию этого процесса препятствуют также жесткие требования к степени очистки газа от сероводорода и невозможность применения воздуха для десорбции раствора (из-за протекания побочных реакций). Как указывалось выше, одним из основных преимуществ процесса водной очистки газа от СОг является значительно меньший расход тепла, чем при процессах очистки этаноламинами или солями щелочных металлов. Расход тепла при этаноламиновой очистке газа от НгЗ меньше, чем при очистке от СО2 вследствие меньшей теплоты реакции. Более того, при достаточно высоком содержании сероводорода в газе, когда увеличение тепловой нагрузки ухудшает экономику процесса, обычно оказывается более целесообразным (а иногда и необходимым) перерабатывать сероводород на элементарную серу. В ходе этого процесса получается достаточное количество отходящего тепла, обеспечивающее нормальную работу этаноламиновой установки. [c.126]

    Ацетилен десорбируют из водного раствора, понижая давление с 19 до 0,05 ата в четыре ступени до 2, до 1, до 0,15 и до 0,05 атл. В первой ступени из раствора выделяется 45%-ный ацетилен, который возвращают в компрессор и оттуда обратно в водяной скруббер. Во второй ступени выделяется 90%-ный ацетилен. Газы, десорбированные в трех последних ступенях, смешивают и подвергают дополнительной очистке, с тем чтобы получить 97%-ный ацетилен. Диацетилен и другие g—С4-углеводороды с высокой степенью ненасыщенности, не удаленные вместе с ароматическими углеводородами при предварительной очистке, отмывают минеральным маслом, а затем серной кислотой. Двуокись углерода поглощается 0,5%-ным водным раствором едкого натра. В результате такой обработки получают 97—98%-ный ацетилен, содержащий до 1% СО2 и 2% инертных газов. Если к ацетилену примешаны значительные количества двуокиси углерода, отмывка последней разбавленным раствором едкого натра представляет, по-видимому, некоторые затруднения [8]. На рис. 29 приведена упрощенная схема такого метода концентрирования ацетилена. [c.281]


    Водная очистка основана на том, что в воде двуокись углерода хорошо растворяется. Конвертированный газ под давлением 25—30 am поступает в нижнюю часть насадочной башни, орошаемую водой. Промытый газ выводится из верхней части башни. Вытекающая из башни вода подается на турбину, где ее давление снижается, и из нее выделяется поглощенная углекислота. Вода вновь поступает на орошение абсорбционных башен. [c.94]

    При водной очистке конвертированный газ поступает в скруббер, орошаемый водой под давлением 16 ат. Стекая по насадке скруббера, вода поглощает двуокись углерода и сероводород из газа, который движется снизу вверх. Полной очистки газа от двуокиси углерода достигнуть не удается. Очищенный газ содержит примерно 1,5—4,5% СОа. [c.34]

    В тех случаях, когда двуокись углерода поступает на синтез карбамида, концентрация примесей в ней строго ограничивается, поэтому необходимо проводить дополнительную очистку газа. Например, в случае абсорбции под давлением концентрация водорода в двуокиси углерода может достигать 1—2%. Чем выше давление, тем больше концентрация водорода. Это объясняется в первую очередь различной зависимостью растворимостей двуокиси углерода и водорода от давления. Чем выше давление, тем меньше коэффициент селективности водного раствора МЭА. [c.131]

    Ацетилен десорбируют из водного раствора, понижая давление с 19 до 0,05 ата в четыре ступени до 2, до 1, до 0,15 и до 0,05 ата. В первой ступени из раствора выделяется 45%-ный ацетилен, который возвращают в компрессор и оттуда обратно в водяной скруббер. Во второй ступени выделяется 90%-ный ацетилен. Газы, десорбированные в трех последних ступенях, смешивают и подвергают дополнительной очистке, с тем чтобы получить 97%-ный ацетилен. Диацетилен и другие Сз—С4-углеводороды с высокой степенью ненасыщенности, не удаленные вместе с ароматическими углеводородами при предварительной очистке, отмывают минеральным маслом, а затем серной кислотой. Двуокись углерода поглощается [c.281]

    Абсорбция двуокиси углерода водой имеет промышленное значение для очистки некоторых газов высокого давления, в частности применяемых для синтеза аммиака. Однако этот процесс, по-видимому, в значительной степени вытесняется другими, более эффективными процессами очистки газа, в которых применяются растворители с большей поглотительной емкостью, например моноэтаноламин и карбонат калия. Технологическая схема простого процесса водной абсорбции показана на рис. 6. 1. В простейшем варианте установка состоит только из абсорбера, работающего при повышенном давлении, десорбера, в котором вследствие снижения давления из воды выделяется двуокись углерода, и насоса для подачи воды в верх абсорбера. На схеме показана также рекуперационная турбина, позволяющая использовать часть энергии путем снижения давления жидкости и последующего расширения абсорбированного газа наличие специальной колонны для выделения газов обеспечивает более полную десорбцию СО2 из воды, чем может быть достигнуто в простом десорбере. При такой схеме процесса в десорбере можно поддерживать некоторое среднее давление, получая при этом газ с достаточно высоким содержанием горючих компонентов, используемый в качестве топливного газа с низкой теплотой сгорания. [c.116]

    Технологическая схема процесса по существу не отличается от схемы водной очистки (рис. 1У-86). В нее включена стадия промежуточной десорбции. В случае отсутствия этой стадии двуокись углерода загрязняется компонентами конвертированного газа и теряется часть азотоводородной смеси. Так как количество абсорбента, подаваемого на орошение, практически не меняется при изменении парциального давления двуокиси углерода в газе, то в схеме с промежуточной десорбцией потери я.чотоЕодородной смеси можно свести практически к нулю за счет рециркуляции потока газа, десорбированного в первом десорбере. [c.265]


Смотреть страницы где упоминается термин Водная очистка газов от двуокиси углерода под давлением: [c.230]    [c.242]   
Смотреть главы в:

Технология связанного азота Издание 2 -> Водная очистка газов от двуокиси углерода под давлением

Технология связанного азота -> Водная очистка газов от двуокиси углерода под давлением




ПОИСК





Смотрите так же термины и статьи:

Водная углерода

Водно-щелочная очистка газа от остатков двуокиси углерода под давлением 30 ат

Давление углерода

Двуокись углерода водная

Очистка газа от двуокиси углерода



© 2024 chem21.info Реклама на сайте