Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Принципы радиационной обработки

    Принципы радиационной обработки [c.301]

    Радиационная обработка кабельных изделий может осуществляться на изотопных у-установках и сильноточных ускорителях электронов [2, 3, 295, 328, 544, 546] . Детальному описанию технологии радиационного модифицирования кабельных изделий посвящена работа [2], в которой рассмотрены общие принципы выбора источников излучения, применяемое оборудование и особенности осуществления технологических процессов облучения проводов и кабелей на у-установках и электронных ускорителях. [c.201]


    Металлические материалы широко применяют в аппарато- и машиностроении, катализе, электротехнике, радио- и электронной промышленности. Действительно, чтобы осуществить любой процесс, например химико-технологический, необходимо располагать соответствующей аппаратурой. Использование представлений макрокинетики, теории химических реакторов, а также методов математического и физического моделирования в принципе позволяет найти оптимальную для данного процесса конструкцию и размеры аппарата. Но тогда возникает вопрос, из каких материалов следует делать эту аппаратуру, чтобы она была способна противостоять разнообразным агрессивным воздействиям, в том числе химическим, механическим, термическим, электрическим, а в ряде случаев также радиационным и биологическим. Выбор конструкционных материалов осложняется, когда перечисленные воздействия сопутствуют друг другу. Кроме того, в последнее время требования к материалам, используемым только в химической технологии, повысились по двум причинам. Во-первых, значительно шире стали применять экстремальные воздействия, такие, как сверхвысокие и сверхнизкие температуры и давления, ударные и взрывные волны, ионизирующие излучения, биологические ферменты. Во-вторых, переход к аппаратам большой единичной мощности по производству основных химических продуктов создает исключительно сложные проблемы в изготовлении, транспортировке, монтаже и эксплуатации подобных установок. Например, на современном химическом предприятии можно видеть контактные печи для производства серной кислоты диаметром 5 м, содержащие до 5000 различных труб, реакторы синтеза аммиака и ректификационные колонны высотой более 60 м. Сочетание механических свойств, таких, как прочность, вязкость, пластичность, упругость и твердость, с технологическими свойствами (возможность использования приемов ковки, сварки, обработки режущими инструментами) делает металлические материалы незаменимыми для построения химических реакторов самой разнообразной формы и размеров. [c.135]

    Не следует преувеличивать важность радиационного повреждения. В принципе повреждение может быть уменьшено различными способами обработки, включая проведение облучения пищевых продуктов в. замороженном состоянии, добавление определенных защитных веществ (особенно эффективна аскорбиновая кислота) и удаление кислорода перед облучением. Антиоксиданты помогают уменьшить развитие запахов и привкусов в жирах. Все эти способы обработки приводят к уменьшению чувствительности микроорганизмов к облучению, а также к ослаблению химических изменений, но тем не менее могут обеспечить успех на практике. Найдено также, что запахи и привкусы могут уменьшаться при хранении, а также при приготовлении пищи, а это значит, что облученная пища, неприемлемая для продажи в виде сырых продуктов вследствие неприятного присущего им запаха, тем не менее может найти сбыт в тех случаях, когда важно только качество готового продукта. Можно также напомнить, что другие формы обработки пищи также производят в ней изменения и что многие в настоящее время предпочитают покупать уже готовые кулинарные изделия, например консервированные персики, и вообще вареную пищу, а не природные сырые продукты. На практике существует ряд примеров, когда радиационное повреждение пищевых продуктов не слишком серьезно.  [c.304]


    Тепловая обработка материалов так же разнообразна, как разнообразны материалы, подвергающиеся обработке, и процессы, протекающие в них. Тепловая обработка протекает на определенном температурном уровне, обеспечивающем развитие технологического процесса, например жидкая сталь выпускается из печей с температурой 1 550—1 650° С, стальные слитки нагреваются перед прокаткой до 1 250°С, чугун выпускается из вагранки при 1 ЭОО—II 400° С и т. д. Разумеется, чтобы довести металл до указанных температур и при том обеспечить необходимую производительность агрегата, следует в рабочем пространстве развивать гораздо более высокие температуры, например факел в мартеновской печи имеет температуру около 2000° С, раскаленный кокс в горне доменной печи - il 800° и т. д. Достижение необходимых температур является первым и основным условием развития технологического процесса. (Получить высокие температуры, необходимые для плавки металлов, нагрева их, для обжига огнеупорных материалов и т. п., не так легко, и для этого требуется определенная техника сжигания топлива в том или ином агрегате. Мы видели, что для создания высоких температур в горне доменной печи сжигают кокс определенного качества (кондиционный кокс), а воздух, необходимый для горения, нагревают в кауперах до темшературы порядка 900— 1200° С. Часто воздух обогащают кислородом — содержание кислорода увеличивают с 21% по объему (в естественном воздухе) до 23—25% и более содержание балластного азота соответственно снижается с 79 до 77—75%. В мартеновских печах для достижения высокой температуры воздух, а часто и газообразное топливо, идущие на горение, нагревают в регенеративном устройстве до 1000—200 С за счет тепла отходящих из рабочей камеры газов тем самым реализуется принцип регенерации тепла. Факел в печи должен обладать высокой лучеиспускательной (радиационной) способностью, так как в противном случае трудно или невозможно будет осуществить плавку. Лучеиспускательная способность каждого участка факела (плотность собственного излучения) ф определяется его степенью черноты 8ф и абсолютной температурой в четвертой степени  [c.81]

    На рис. 71 приведена линия электролитического лужения ленты в щелочном (станнатном) электролите. Стальную ленту разматывают с барабана и подают на ножницы для обрезки концов, которые затем сваривают. Далее ленту подают в петлевую яму. За петлевой ямой установлено оборудование для подготовки поверхности ленты к покрытию, затем следует лужение и оплавление. Оплавление может производиться по принципу электросопротивления, индукционным способом или радиационным нагревом. Окончательная отделка ленты заключается в химической обработке полуды (пассивация), нанесении жирового слоя, резке или скатывании в рулоны. [c.162]

    В любом кристалле при т-ре, отлично от О К, существует нек-рая термодинамически равновесная концен-трация точечных Д. Неравновесная концентрация м. б. получена при изменении условий роста (состава р-ра или расплава, т-ры, давления) или в результате обработки (мех., термич., радиационной). В зависимости от вида и концентрации точечные Д. могут существенно влиять на электрич. св-ва полупроводников, магн. св-ва ферритов, оптич, св-ва кристаллофосфоров и т. п. Концентрацию точечных Д. в ионньк кристаллах можно изменять также допированием, т.е. введением в решетку иона, заряд к-рого отличается от заряда замещаемого иона в решетке. Тогда, согласно принципу электронейтральности, в решетке должно образоваться дополнит, число вакансий или междо-узельных ионов, чтобы скомпенсировать избыточный локальный заряд введенной примеси. [c.30]


Смотреть страницы где упоминается термин Принципы радиационной обработки: [c.19]    [c.17]   
Смотреть главы в:

Радиационная химия органических соединений -> Принципы радиационной обработки




ПОИСК







© 2025 chem21.info Реклама на сайте