Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Защитные слои белковых веществ

    При введении в раствор золя небольших концентраций высокомолекулярных веществ устойчивость золей значительно повышается, что выражается в повышении порога коагуляции. На этом основано явление защиты лиофобных золей. Механизм защитного действия зависит от образования адсорбционного слоя введенного вещества на поверхности частиц гидрофобного золя. Защитными веществами могут служить в водной среде белки, углеводы, пектины. Защитное действие измеряется так называемым защитным числом — количеством миллиграммов защитного вещества, которое необходимо добавить к 10 мл исследуемого золя, чтобы защитить его от коагуляции. [c.268]


    Защитным действием по отношению к коллоидным растворам в воде обладают белки, полисахариды, пектиновые вещества. Механизм защитного действия сводится к адсорбции молекул высокомолекулярного вещества на поверхности частиц золя. Адсорбируясь на частицах гидрозолей, макромолекулы белков и других растворимых в воде полимеров располагаются на поверхности твердой фазы так, что их гидрофильные (полярные) группы обращены к воде. Благодаря этому усиливается гидратация частиц.(Если в состав полимера входят ионогенные группы, способные к диссоциации,. как, например, в белках, то защитный слой сообщает. частице и достаточно высокий электрокинетический потенциал. Гидратная оболочка и высокий электрокинетический потенциал придают золю необычную для него агрегативную устойчивость. Цля разрушения такого золя необходимо прибавить к нему такое же большое ко- [c.264]

    Типичные коллоидные системы чувствительны к действию электролитов. Однако при введении в них определенных высокомолекулярных веществ и образовании на поверхности частичек соответствующего адсорбционного слоя устойчивость гидрозолей может быть значительно повышена. Такое явление получило название коллоидной защиты. Веществами, способными обусловливать коллоидную защиту, являются белки, углеводы, пектины, а для систем с неводной дисперсной средой — каучук. Часто эти вещества называют защитными коллоидами, хотя такое название по существу неправильно и объясняется лишь исторической традицией. [c.95]

    Способность ВМС к образованию адсорбционно-сольватных слоев на поверхности частиц называют защитным действием и широко используют в практике. Например, частички кварца или металла, защищенного адсорбционным слоем белка, устойчивы, обратимы, и по своему поведению не отличаются от макромолекул белка. Вещество дисперсной фазы скрыто оболочкой, и частицы различного химического состава, защищенные одинаковыми оболочками, не различаются между собой по [c.261]

    Л. н. состоят из плотной эластичной каучуковой оболочки (гель-каучук), внутри к-рОй находится жидкая низкомолекулярная фракция (золь-каучук). Наружная поверхность каучуковой оболочки окружена защитным слоем, состоящим из белковых веществ (в свежесобранном Л. н. их содержится 4%), смол, мыл и гидратно-связанной воды. По мере старения Л. н. белки постепенно гидролизуются в аминокислоты по содержанию последних можно судить о возрасте латекса. [c.18]


    В случае белков отвердителями могут быть дубители — танины. Механизм явлений, происходящих при получении микрокапсул коллоидно-химическими методами, можно представить следующим образом. Первичным процессом является получение эмульсии с образованием на поверхности капелек защитного слоя из высокомолекулярного ПАВ, толщина которого лежит в пределах 0,05—1 мкм (см. табл. 1У-5). При этом количество высокомолекулярного ПАВ на 1 см поверхности колеблется от 3 10" до 40 10" кг. При сжатии такой оболочки толщина слоя будет составлять (25—300)-10 м. Однако при сжатии оболочки на поверхность капли выпадает дополнительное количество оболочечного вещества из раствора. [c.191]

    Свежий латекс состоит главным образом из водной фазы п углеводорода каучука. В водной фазе содержатся минеральные соли, углеводы и белковые вещества. Частицы каучука имеют форму глобул диаметром от 0,1 до 2 л. Эти частицы окружены слоем белков — защитных коллоидов, сообщающих глобулам каучука отрицательный заряд. Обычно латекс мало устойчив и вскоре начинает коагулировать. Для предупреждения коагуляции в латекс вводят консервирующее вещество, препятствующее развитию микроорганизмов и повышающее pH среды до 10—11. Большей частью для этой цели применяют аммиак, который вводят в количестве от 0,5 до 1%, но используются и другие консервирующие вещества, например пентахлорфенолят натрия. [c.438]

    Каучуковая частица состоит из трех слоев наружного защитного адсорбционного слоя (оболочки), слоя эластичного каучука и внутреннего вязкотекучего каучукового слоя (рис. 3). Наружный слой состоит из белков, жирных кислот и других поверхностно-активных веществ, содержащихся в латексе, адсорбированных на поверхности каучуковых частиц. [c.23]

    В отличие от утверждения авторов, понятие. поверхностная активность имеет совершенно строгий смысл и определяется как способность данного веш[ества понижать поверхностное натяжение на той или иной жидкой или твердой поверхности раздела в результате его положительной адсорбции на этой поверхности. Поэтому терминологически неправильно относить к поверхностноактивным веществам, как это неявно делают авторы, только те соединения, которые адсорбируются на границах раздела жидкость—воздух или жидкость — жидкость. Кроме мыл (в широком смысле слова, т. е. солей органических кислот и синтетических моющих средств), образующих в воде полукол-лоидные, мицеллярные растворы, о которых почти исключительно идет речь в данной книге, к поверхностноактивным веществам относятся также типичные защитные коллоиды (белки, углеводы, липоиды и др.) и молекулярно-растворимые в воде или в неводных средах соединения (органические кислоты, спирты и т. д.). Во многих случаях поверхностная активность этих веществ является необходимым, но недостаточным условием для получения того или иного технологического эффекта, который в конечном счете может быть вызван лишь вторичными процессами изменения образовавшихся адсорбционных слоев. В частности, это полностью приложимо к явлениям гидрофоби-зации тканей при водонепроницаемой пропитке специальными поверхностноактивными веществами (см. гл. VI, стр. 17С). Поэтому адсорбционные пленки этих веществ нельзя отождествлять по механизму образования со слоем краски на твердой поверхности. Точно так же многие соединения, будучи сильно поверхностноактивными, тем не менее не являются эмульгаторами или пенообразователями, так как эмульгирующая и пенообразующая способность обусловлена особыми свойствами адсорбционных слоев (их механической прочностью). С другой стороны, по этой причине эффективными эмульгаторами или пенообразователями могут быть вещества, обладающие относительно слабой поверхностной активностью. — Прим. ред. [c.13]

    Кожный жир, состоящий из пальмитиновой, олеиновой жирных кислот, холестерина, белков и экстрактивных веществ, образуя защитную пленку, ограничивает испарение влаги с поверхности кожи и, таким образом, препятствует высыханию рогового слоя, а при влажном воздухе эта же пленка защищает роговой слой от пропитывания влагой. [c.126]

    Однако стабилизация дисперсных систем значительно более эффективна при добавлении к ним поверхностно-активных веществ (ПАВ) и высокомолекулярных соединений, адсорбирующихся на границе раздела фаз. Адсорбционные слои ПАВ и высокомолекулярных соединений, обладая упругостью и механической прочностью, предотвращают слипание дисперсных частиц. Образование таких молекулярно-адсорбционных твердообразных поверхностных слоев П. А. Ребиндер назвал стру к турно-механ и чески м фактором стабилизации дисперсных систем. Этот механизм стабилизации играет основную роль при получении предельно устойчивых высококонцентрированных пен, эмульсий, коллоидных растворов и суспензий не только в неводных, но и в водных средах. Для структурно-механической стабилизации дисперсии в водной среде применяют мыла щелочных металлов, белки, крахмал, а в неводных средах — мыла щелочноземельных металлов, смолы, каучуки. Такие вещества называют защитными коллоидами. [c.325]


    Несколько иная закономерность наблюдается при использовании в качестве пенообразователей некоторых высокомолекулярных веществ (белков, пектинов и сапонина). В этом случае на поверхности раздела фаз располагаются длинные цепеобразные молекулы, полярные группы которых направлены в сторону жидкой (полярной) фазы. Ввиду того, что макромолекулы полимера образуют сплошную защитную студнеобразную пленку, увеличение концентрации, даже выше значения, соответствующего полному насыщению адсорбционных слоев, не приведет к уменьшению стойкости пены. Для высокомолекулярных пенообразователей характерно почти полное взаимное соответствие изотермы адсорбции и кривой, выражающей зависимость стойкости пены от концентрации пенообразователя. [c.83]

    Для защиты водных коллоидных систем от коагулирующего действия электролитов употребляют так называемые защитные вещества — высокомолекулярные соединения, растворимые в воде (белки, эфиры целлюлозы, крахмал, декстрины), а также водные растворы мыл. В основе защитного действия, как показал Н. П. Песков (1922), лежит адсорбция молекул высокополимера или мыла поверхностью твердой частицы. В результате на поверхности частицы образуется слой адсорбированных молекул, которые в свою очередь переплетаются в механически прочную структуру. [c.328]

    Смесь Фенол - хлороформ - изоамиловый спирт является токсическим и коррозийным раствором, который используется для удаления белков из растворов, путем перевода их в нерастворимое состояние (химическая денатурация). Является токсичной и смертельно опасной при попадании вовнутрь, вдыхании, или абсорбции через наружные слои эпителия. Кроме того, эта смесь может вызывать раздражение и повреждение глаз и является потенциально канцерогенным веществом. При попадании на кожу или в глаза следует немедленно обработать место контакта, согласно повседневным лабораторным правилам техники безопасности. При засасывании, промойте ротовую полость водой, если потерпевший находится в сознании. Получите медицинскую помощь немедленно. Применяйте соответствующие индивидуальные средства защиты и используйте вытяжной шкаф при работе с этой смесью, используйте химически устойчивые защитные перчатки из неопрена или каучука. [c.249]

    По Ребиндеру, структурно-механический барьер возникает при адсорбции молекул ПАВ, которые могут быть не сильно поверхностно-активными для данной границы раздела фаз, но способны к образованию гелеобразного структурированного слоя на межфазной границе (ПАВ третьей и четвертой групп по классификации, приведенной в 3 гл. И). Этот слой подобен трехмерной структуре — гелю, который может возникать в растворах ряда веществ при достаточной их концентрации. К таким веществам относятся глюкозиды, белки, производные целлюлозы (карбоксиметилцеллюлоза) и другие так называемые защитные коллоиды — высокомолекулярные вещества со сложным строением молекул, которые имеют области меньшей и большей гидрофильности в пределах одной молекулы. По отноше-лию к дисперсиям гидрофильных порошков в неполярных жидкостях высокой стабилизирующей способностью обладают многие маслорастворимые ПАВ, способные прочно (химически) адсорбироваться на поверхности гидрофильных частиц. Стабилизированные таким путем лиофобные системы приобретают свойства дисперсий данного стабилизатора, т. е. становятся лиофилизованнымн. По Ребиндеру, следующие условия определяют высокую эффективность структурно-механического барьера. [c.261]

    Коллоидные растворы коагулируют пои невысокой концентрации электролитов. Однако устойчивость их может быть значительно повышена путем создания дополнительно на поверхности частиц адсорбционных слоев с повышенными структурно-механическими свойствами. Стабилизация лиофобного золя за счет добавления незначительной массы высокомолекулярных (лиофильных) соединений (желатина, казеината натрия, мыла, белков и пр.), способствующих образованию на поверхности частиц адсорбционно-сольватных слоев, полностью предотвращая коагуляцию электролитами, называется защитным действием стабилизаторов. Для количественной оценки защитных свойств различных веществ введено понятие золотого числа , под которым понимают ту минимальную массу стабилизирующего вещества (в мг), которую следует добавить, чтобы защитить 10 мл красного золя золота от коагуляции с появлением синей окраски при добавке к золю 1 мл 10%-ного раствора хлорида натрия. Например, золотое число желатины равно 0,008. Это значит, что 0,008 мг ее защищает 10 мл золя золота от коагуляции 1 мл 10%-ного раствора Na l. [c.160]

    Диснерсная фаза Л. п. состоит из частиц (глобул) пгарообразной илп грушевидной фо])мы размером от 0,25 до 5. икм средний размер — 2 мкм. Глобулы Л. н. состоят из плотной эластичной каучуковой оболочки (гель-каучук), внутри к-рой нахсдится жидкая низкомолекулярная фракция (золь-каучук). Наружная поверхность каучуковой оболочки окружена защитным слоем, состоящим из белковых веществ (в свежесобранном Л. II. их содержится 4%), смол, мыл и шдратно-связанной воды. По мере старения Л. н. белки постепенно гидролизуются в аминокислоты но содержанию последних можно судить о вое расте латекса. [c.20]

    Коагуляция, происходящая при сливании двух гидрофобных золей с различными знаками зарядов частиц, называется взаимной коагуляцией. По своей структуре двойные электрические слои коллоидных частиц этих золей имеют обратный знак, и перекрытие их ионных атмосфер приводит к притяжению коллоидных частиц. Наиболее полная коагуляция наблюдается при взаимной нейтрализации зарядов частиц. При избытке одного из золей ионы перераспределяются, образуя измененные двойные слои вокруг агрегативных частиц. В результате возникает устойчивая система со знакол заряда частиц, содержащихся в избыточном коллоидном растворе. При введении в раствор золя небольших концентраций высокомолекулярных веществ значительно повышаются устойчивость золей и порог коагуляции. На этом основано явление защиты лиофобных золей. Механизм защитного действия зависит от образования адсорбционного слоя введенного вещества на поверхности частиц гидрофобного золя. Защитными веществами могут служить в водной среде белки, углеводы, пектины. Защитное действие измеряется так называемым защитным числом. Защитное число определяют количеством [c.154]

    ПАВ, образующие гелеобразную структуру в адсорбционном" слое и в растворе, относятся к третьей группе. Такие вещества предотвращают коагуляцию частиц, стабилизируют дисперсную фазу в дисперсионной среде, поэтому их называют стаб илиз а-торами. Механизм действия сильных стабилизаторов состоит в том, что, кроме возникновения структурно-механического барьера для сближения частиц, важное условие стабилизации состоит в том, чтобы наружная поверхность такой оболочки была гидрофильной и чтобы не могло произойти агрегирования вследствие соприкосновения наружных поверхностей. Стабилизаторами могут быть сравнительно слабые ПАВ, так как даже при слабой адсорбции они могут образовывать сильно структурированные защитные оболочки. К числу ПАВ, обычно применяемых в качестве стабилизаторов, относятся гликозиды (сапонин), полисахариды, высокомолекулярные соединения типа белков. Стабилизаторы не только препятствуют агрегированию частиц, но и предотвращают развитие коагуляционных структур, блокируя путем адсорбции места сцепления частиц и препятствуя тем самым их сближению. Поэтому стабилизаторы суспензий являются также адсорбционными пластификаторами. Последние нашли очень широкое применение в гидротехническом строительстве, керамическом производстве, сооружении асфальтовых дорог, инженерной геологии, сельском хозяйстве с целью улучшения структуры почвы и др. [c.35]

    В таких системах между частицами проявляют себя только силы взаимного притяжения. Стабилизация дисперсных систем обуславливается образованием вокруг коллоидных частиц адсорбционных слоев из молекул дисперсной среды и растворенных в ней веществ. Она усиливается при добавлении ПАВ и высокомолекулярных соединений. П. А. Ребиндер назвал возникновение молекулярно-адсорбционных слоев, предотвращающих слипание дисперсных частиц, структурно-механическим фактором стабилизации. Вещества, способствующие структурно-механической стабилизации, называют защитными коллоидами — это белки, пептины, крахмал, мыла, смолы, каучуки, сапонин, желатина и др. (см. гл. ХУП1). Таким образом, устойчивость золей может быть повышена как введением электролитов, так и коллоидной защитой. [c.237]

    ТАТЕКС НАТУРА.ИЫ1ЫЙ — м.лсчный сок каучуконосных растений. Практич. значение имеет только Л. н. бразильской гевеи. Находится в млечниках, расположенных в коре растения, и добывается подсочкой. Молочно-белая жидкость о желтым, розовым или сероватым оттенком. Средний состав 52—60% воды,. 34—37% каучука, 2—2,7% белков, 1,65—3,4% смолы, 1,5—4,2% сахара, 0,7—0,2% минеральных веществ. Состав Л. н. зависит от возраста дерева, климатич. З с.ловий, времени года и т, д. Свежий Л. н. имеет щелочную реакцию (pH 7,2). К аучук находится в Л. н. в виде отрицательно заряженных глобул — взвешенных частиц шарообразной или грушеобразной формы, со средни размером 0,17—0,26 мк. Основная масса каучука содержится в частицах со средним размером ок. 1. НК. На поверхности глобул находится защитный адсорбционный слой поверхностно-активных веществ (белков, мыл жирных к-т и др.), обусловливающий устойчивость, Л. н. и препятствующий его коагуляции. Диснерсная фаза свежего Л. н., кроме глобул, содержит желтую фракцию в виде коллоидных частиц неправильной формы, по-видимо.му, белковой при-род >1. [c.465]

    Стабилизующее действие ионов электролитов и поверхностно-активных веществ различно по эффективности. Ионная стабилизация заметным образом проявляется только в водных дисперсных системах с малым содержанием диснерсной фазы, напр, в гидрофобных золях (коллоидных р-рах) и в очень разб эмульсиях и суспензиях, в к-рых эффективность соударений частиц вследствие теплового движения и, следовательно, вероятность коагуляции невелика. В концентрированных же системах как водных, так и неводных — технич. эмульсиях, суспензиях, пенах, для устойчивости к-рых требуется сильная стабилизация, последняя может быть достигнута только с помощью поверхностно-активных веществ, адсорбционные слои к-рых структурированы и обладают повышенной прочностью или вязкостью, к этим стабилизаторам относятся полуколлоиды — мыла и высокомолекулярные соединения (защитные коллоиды) типа сапо-шгпов, желатины, белков и др. [c.506]

    Подвергая подобнылг манипуляциям глобулу каучука в латексе, Хаузер убедился, что в ней могут быть выделены три слоя (рис. 22). Наружный слой представляет собой адсорбционную защитную оболочку и состоит из белков, лецитина, жирных кислот и других поверхностно-активных веществ, содержащихся в латексе. Следующий слой состоит из твердого эластичного каучука. Наконец, внутреннее содержание глобулы, составляющее главную массу ее, представляет собой также каучуковый углеводород, по консистенции напоминающий очень вязкую жидкость. [c.59]

    На основании богатого опытного материала и наблюдений над превращениями органического вещества в условиях гнилостного илообразо-вания Хехт пришел к выводу, что белки быстро разлагаются, а оставшаяся часть азота находится почти полностью в хитине. Распад оргаиичеоких азотистых веществ завершается уже в начальной стадии седиментации — до процесса перекрывания их достаточным слоем защитных осадков. [c.370]


Смотреть страницы где упоминается термин Защитные слои белковых веществ: [c.18]    [c.18]    [c.220]    [c.271]    [c.465]    [c.65]    [c.429]   
Коагуляция и устойчивость дисперсных систем (1973) -- [ c.56 ]




ПОИСК





Смотрите так же термины и статьи:

Защитные белки

Защитные слои

Защитный слой



© 2025 chem21.info Реклама на сайте