Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеиновые кислоты и белки хлоропластов

    Растворимая фаза хлоропластов, или строма, представляет собой белковый гель, в котором концентрация белка может достигать 300 мг/мл [26], где присутствуют также нуклеиновые кислоты, рибосомы и ряд ферментов, катализирующих реакции метаболизма этих органелл (более детальные сведения см. в [17]). [c.242]

    Удерживание в неоднородном электрическом поле белков и нуклеиновых кислот с сохранением их биологической активности свидетельствует о возможной роли этого явления в живой клетке. Общеизвестно, что клеточная стенка неоднородна ио своему составу, а следовательно, и по диэлектрической проницаемости и имеет довольно высокий электрический потенциал [ б, 17, 474]. Мембраны клеточных органелл (митохондрий, хлоропластов) и бактерий содержат молекулярные электрические генераторы [87], причем величина генерируемой трансмембранной разности электрических потенциалов достигает существенных значений— 100--300 мВ. Поэтому вполне резонно допустить существование в клеточных структурах неравномерного неоднородного электрического поля, аналогичного создаваемому нами в эксперименте, с высокой напряженностью и градиентом потенциала, и предположить его влияние на процесс удерживания, локализацию и работу биологически активных соединений, особенно высокомолекулярных. [c.228]


    Условием осуществления фотосинтеза является локализация необходимых пигментных, окислительно-восстановительных и ферментных систем в специальных органоидах фотосинтезирующих клеток. В случае растений и водорослей — это хлоропласты, в случае бактерий — хроматофоры. В них, наряду с фотосинтезом, происходит также синтез белков, нуклеиновых кислот, липидов, пигментов и других физиологически активных веществ фотосинтезирующие органоиды обладают известной автономностью в клетке. [c.7]

    Нуклеиновые кислоты и белки хлоропластов [c.63]

    Положительное влияние азотных удобрений может объясняться прямым и косвенным действием. Прямое заключается в использовании азота на образование аминокислот— продуктов фотосинтеза. Косвенное объясняется тем, что азот необходим для синтеза зеленых пигментов, а также белков, являющихся, с одной стороны, элементами структуры хлоропластов и, с другой — ферментами, катализирующими различные реакции процесса фотосинтеза. Азот входит и в состав нуклеиновых кислот. [c.126]

    Однако позднее было выяснено, что в растительном соке содержится много вредных примесей, таких как фенолы, тяжелые металлы, ингибиторы трипсина (фермент желудочного сока животных и человека), гемо-лизирующие вещества (свертывающие кровь), нуклеиновые кислоты, алкалоиды, продукты разложения хлорофилла и др. Больше таких веществ — в ядре, хлоропластах, митохондриях и меньше — в цитоплазме. Исходя из этого, для использования на кормовые и пищевые цели наиболее пригодны цитоплазматические белки. [c.273]

    И. М. Сисакян обнаружил в хлоропластах листьев сахарной свеклы и других растений значительные количества нуклеиновых кислот, причем, наряду с рибонуклеиновой кислотой, занимающей основное место, им впервые установлено также присутствие дезоксирибонуклеиновой кислоты. В зависимости от вида растения, возраста и других причин содержание РНК колеблется от 0,5 до 3,57о (от сухого веса). Оно изменяется в ходе развития растения, в частности, хлоропласты молодых листьев содержат РНК в 2—3 раза больше, чем старые. При старении листьев изменяется также качественный состав РНК, главным образом за счет возрастания отношения пиримидиновых оснований к пуриновым. Изменения содержания РНК хлоропластов в онтогенезе листьев протекают параллельно изменениям содержания белков. Эти данные согласуются с общепринятыми в настоящее время представлениями об участии РНК в синтезе белков. [c.106]


    Помимо нуклеиновых кислот и белков для построения новых митохондрий и хлоропластов нужны липиды. Все необходимые хлоропластам липиды обычно образуются в самих органеллах. В листьях шпината, например, все жирные кислоты клетки синтезируются в хлоропластах, хотя образование не-насьш енных связей в их молекулах происходит в цитоплазме. Даже важнейшие гликолипиды хлоропластов образуются в них самих. [c.66]

    Основную массу хлоропластов составляют белки и липиды. Кроме того, в их состав входят пигменты, отдельные элементы, нуклеиновые кислоты, углеводы и другие вещества (табл. 5). Хлоропласты содержат 75% воды и 10—15% сухого органического вещества. Около половины всей фракции липидов составляют жиры, 20% приходится на стеролы и 5% —на фосфатиды. [c.157]

    Само название нуклеиновые кислоты (от лат. nu leus — ядро) показывает, что открыты они были как составная часть клеточного ядра, в котором действительно присутствуют оба класса нуклеиновых кислот — ДНК и РНК. Основным местом локализации ДНК являются структуры клеточного ядра — хромосомы, в которых ДНК находится в виде комплексов с белками — дезоксирибонуклеотидов. ДНК ( 1% от общего количества) также обнаружена в митохондриях всех типов эукариотических клеток и в хлоропластах растительных клеток. В структуре ядерной ДНК заложена информация о видовых специфических признаках, которые определяют характер данной клетки и всего организма и передаются по наследству. В цитоплазме клеток имеются значительные количества РНК, участвующие в реализации генетической информации. Важными открытиями в изучении нуклеиновых кислот, удостоенными Нобелевской премии, явились установление пространственной структуры ДНК Дж. Уотсоном, Ф. Криком и М. Уилкинсом, ферментативный синтез в бесклеточной системе биологически активной ДНК, осуществленный А. Корн-бергом и С. Очоа, блестящие исследования М. Ниренберга, Р. Холи и X. Корана, послужившие предпосылкой для расшифровки генетического кода. [c.171]

    Существуют два различных типа нуклеиновых кислот —дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). ДНК представляет собой генетический материал большинства организмов. В прокариотических клетках, кроме основной хромосомной ДНК, часто встречаются вне хромосомные ДНК — плазмиды. В эукариотических клетках основная масса ДНК расположена в клеточном ядре, где она связана с белками в хромосомах. Эукариотические клетки содержат ДНК также в различных органел-лах (митохондриях, хлоропластах). Что же касается РНК, то а клетках имеются матричные РНК (мРНК), рибосомные РНК (рРНК), транспортные РНК (тРНК) и ряд других кроме того, РНК входят в состав многих вирусов. [c.296]

    Пластиды — внутриклеточные структуры округлой формы размером 3—10 1. Среди пластид наибольшее значение в жизнедеятельности клеток имеют хлоропласты и меньшее—хромопласты и лейкопласты. В хлоропластах содержится 65—75% воды и 25—35% сухого вещества. В сухом веществе 35—50% занимают белки, 30—35% липиды, около 10% зола, 4—5% хлорофилл, 1—2% нуклеиновые кислоты. Кроме того, в хлоропластах содержится небольшое количество углеводов, а также витамины и не.которые другие соединения. В хромопластах липиды могут составлять 55%, а в лейкопластах — 20—25% в содержании остальных веществ (кроме хлорофилла) между хлоропластами, хромопластами и лейкоиластами существенных различий не наблюдается. [c.31]

    Изучение нуклеиновых кислот хлоропластов имеет большое значение в связи с выяснением вопроса о степени их автономности в клетках. Известно, что в ядерной ДНК содержится информация, определяющая качество синтезируемых белков, в том числе ферментов, а с помощью нескольких видов РНК осуществляются различные этапы белкового синтеза. Информационная РНК, образуясь на ДНК, считывает с нее информацию и переносит последнюю к месту синтеза белка — рибосоме. Информационная РНК и рибосома образуют единый белок-синтезирующий агрегат. Взаимодействие между ними осуществляется за счет специфической рибосомаль-ной РНК. Третий вид РНК — транспортная — участвует в отыскании, доставке аминокислот и сборке из них белка на информационной РНК, мигрировавшей от места синтеза на ДНК к рибосомам. Число видов транспортной РНК соответствует числу видов аминокислот Во время синтеза белка одна молекула информационной РНК может взаимодействовать с несколькими рибосомами, образуя так называемую полирибосому или полисому. [c.64]

    Подробно функции хлоропластов рассматриваются в главе Фотосинтез . Здесь же отметим, что ламеллы хлоропластов представляют собой липопротеидный комплекс, построенный аналогично таковым митохондрий. В отличие от последних у хлоропластов между чередующимися друг с другом белковыми и фос-фолипидными слоями заключены молекулы зеленых и желтых пигментов. Одной из составных частей мембранных белков хлоропластов является структурный белок, на долю которого приходится около 10% от общего количества белка хлоропласта. Этот белок идентичен структурному белку митохондрий и так же, как последний, ответствен за процессы набухания я сокращения объема хлоропластов при помещении их в растворы разной тонич-ности. Ббльщая часть белков хлоропластов принадлежит липопро-теидам, доля водорастворимых белков незначительна. Данные последних лет свидетельствуют о наличии в хлоропластах нуклеиновых кислот — низко- и высокомолекулярной РНК, а также специфической ДНК. Обладают хлоропласты собственными рибосомами. [c.52]


    Самосборка в биологических системах проявляется в бислойном расположении фосфолипидов в мембранах, комплементарной последовательности азотистых оснований в нуклеиновых кислотах, во взаимодействии фермента и субстрата, белка-рецептора и эффектора (например, фитогормона), в сборке многокомпонентных ферментативных комплексов и т. д. Например, рибулозодифосфаткарбоксилаза в хлоропластах собирается из восьми больших и восьми малых субъединиц. [c.319]

    В настоящее время нет достаточно убедительных данных в пользу участия лизосом в распаде нуклеиновых кислот. Однако известно, что лизосомы могут скапливаться вокруг ядер, проходить через ядерную мембрану и переносить в ядро гормоны и таким образом инициировать процесс транскрипции. Однако этих данных мало для изучения распада белков и предполагается, что распад ДНК связан с распадом клеток после их гибели. Это имеет отношение и к ядерной, и к цитоплазматической ДНК. ДНК митохондрий и хлоропластов (большая часть которых циклические) распадается в основном при разрушении митохондриальных мембран путем аутофагии (образование аутофагосом). [c.77]


Смотреть страницы где упоминается термин Нуклеиновые кислоты и белки хлоропластов: [c.50]    [c.428]    [c.380]    [c.68]    [c.258]    [c.24]    [c.45]    [c.290]    [c.264]    [c.34]    [c.498]    [c.184]    [c.34]    [c.498]   
Смотреть главы в:

Основы фотосинтеза -> Нуклеиновые кислоты и белки хлоропластов




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые кислоты

Хлоропласт



© 2024 chem21.info Реклама на сайте