Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Информационные молекулы

    Информационные молекулы — макромолекулы, несущие информацию в форме специфической последовательности различных строительных блоков к ним относятся, в частности, белки и нуклеиновые кислоты. [c.129]

    Таким образом, дискуссионным остается вопрос о том, на каком этапе эволюционного процесса нуклеиновые кислоты сформировались как информационные молекулы. Согласно одним представлениям на начальном этапе эволюции роль последних выполняли белковоподобные молекулы, и первые примитивные клетки функционировали без нуклеиновых кислот. Другая гипотеза исходит из того, что первыми возникли нуклеиновые кислоты, а позднее, на базе содержащейся в них информации, возникли белки (гипотеза генной жизни ). [c.201]


    Наиболее высокоорганизованными являются ферменты, с помощью которых осуществляется синтез новых молекул биополимеров, белков и нуклеиновых кислот. Эти ферменты обладают способностью не только катализировать образование пептидных или межнуклеотидных связей, но и воспринимать информацию, поступающую в виде специальных информационных молекул — нуклеиновых кислот. На каждом этапе роста цени нуклеиновые кислоты программируют, какой из мономеров должен быть отобран ферментом и присоединен к растущей синтезируемой цепи. Такие информационные молекулы называют матрицами, а фер- [c.11]

    Представления о растворимой транспортной РНК и о ее комплементарном сочетании с матричной РНК носят еще весьма предварительный характер. Считают, что соответствующие транспортные РНК с разными аминокислотами занимают соответствующие места на матричной (информационной) молекуле РНК в результате аминокислоты располагаются в ряд в соответствующем порядке, образуя специфическую полипеп-тидную цепь белка. Так, образование пептидных связей, отличающееся высокой специфичностью и происходящее с большой скоростью, осуществляется под влиянием специфической информации, закодированной последовательностью расположения нуклеотидов в ДНК (и РНК). При помощи механизма попарного соединения оснований эта последовательность воспроизводится с образованием либо новых молекул ДНК для новых клеток, либо молекул матричной РНК, необходимых для синтеза белковых молекул, характерных для данного вида. При помощи белков, многие из которых являются ферментами, клетка синтезирует множество других молекул (в том числе пуринов, пиримидинов, аминокислот, углеводов, жиров, стеринов, пигментов и т. п.), часто необходимых для поддержания ее структуры и функции. [c.94]

    РНК информационная — молекула РНК, комплементарно дополняющая каждую из нитей ДНК полностью повторяя последовательность ее нуклеотидов (тем самым принимая всю ее генетическую информацию), после транскрипции выходит из ядра клетки и внедряется в рибосому, где управляет синтезом белков из аминокислот. [c.192]

    Живые организмы - это автономные самовоспроизводящиеся химические системы. Они построены из специфического и вместе с тем ограниченного набора углеродсодержащих малых молекул, как правило, одних и тех же для всех видов живых существ. Основные группы этих молекул представлены сахарами, жирными кислотами, аминокислотами и нуклеотидами. Сахара служат важнейшим источником энергии для клеток и запасают ее, образуя резервные полисахариды. Жирные кислоты, как и сахара, имеют важное значение для запасания энергии, но самая главная их функция - образование клеточных мембран. Полимеры, построенные из аминокислот, представлены удивительно разнообразными и многофункциональными молекулами белков. Нуклеотиды участвуют во внутриклеточной передаче сигналов и играют центральную роль в переносе энергии, однако их уникальное значение состоит в том. что они являются субъединицами информационных молекул РНК и ДНК [c.79]


    Вышеизложенное объясняет, почему в нашей работе основное внимание уделено строению и свойствам именно пептидов, т. е тех информационных молекул, которые совмещают множество функций в компактной упаковке полипептидной цепи, в частности воспринимают изменения внешней и внутренней среды, формируют информационные сигналы, передают их клеткам, осуществляют обратную связь и тем самым поддерживают саморегуляцию организма. [c.16]

    Итак, предок сложных современных генетических систем, возможно, использовал в качестве первых информационных молекул РНК. Случайно воз- [c.18]

    Гл. 2 мы начинаем с элементарного описания генов и основного закона молекулярной и клеточной биологии о движении генетической информации в живых системах, т. е. с центральной догмы молекулярной биологии. Некоторые основные понятия (ДНК, РНК, основания А, G, С и T/U, белки) уже даны в табл. 1.2. В гл. 2 мы вкратце изложим современную точку зрения на ранние этапы эволюции. По-видимому, первой информационной молекулой, способной к дарвиновской эволюции, была РНК. Но, как ни парадоксально, первичный генетический материал во всех клетках и у многих вирусов — это ДНК. Почему  [c.36]

    Гл. 6 ключевая в нашей книге. Именно в ней мы пытаемся обосновать нашу гипотезу о проницаемости барьера Вейсмана за эволюционное время, по крайней мере для У-генов иммунной системы. Центральная информационная молекула в этой драме уже не стабильная двухцепочечная ДНК (в которой последовательностями нуклеотидов А, С, С и Т записана генетическая информация), а сравнительно нестабильная молекула-посредник РНК. [c.37]

    Началом молекулярной генетики можно считать открытие строения и роли отдельной клетки. Несколько миллиардов лет назад на Земле начала распространяться клеточная форма жизни. Неотъемлемой чертой живых клеток является репликация и передача от материнских клеток к дочерним информационных молекул, сначала РНК, а затем ДНК. [c.41]

    Часть I. Строение информационных молекул и матричные биосинтезы [c.18]

    Новые наследственные признаки возникают в генофонде в результате генных мутаций. Последние создают фонд наследственных изменений, служащих исходным материалом (сырьем) для эволюции. Вероятно, мутации являются и самым первым видом наследственной изменчивости, возникшим одновременно с началом функционирования ДНК как информационной молекулы, поскольку для них не нужно никаких дополнительных структур и механизмов. Способность к мутированию заложена в химическом строении молекулы ДНК, а проявление мутационных изменений идет по тем же каналам, что и обычная генетическая информация клетки. Возможно, в течение длительного времени мутационные изменения были единственной формой изменчивости. На протяжении миллионов лет мутации в сочетании с естественным отбором сыфали решающую роль в появлении тех видов бактерий, которые известны сейчас. [c.153]

    Синтез информационных молекул - ДНК и РНК - катализируется первичными метаболитами - ферментами. Распад вторичных метаболитов до исходных продуктов возможен под действием ферментов одного и того же микроорганизма. Образование прометаболитов осуществляется при действии первичных метаболитов-ферментов. [c.453]

    Что же такое ГПГ Напомним, что вся информация об организме — от бактерии до человека — хранится (точнее, кодируется) в его ДНК. Знаменитая двойная спираль молекулы ДНК состоит всего из 4 оснований А (аденин), Т (тимин), Г (гуанин) и Ц (цитозин). Две нити ДНК связаны углеводородными мостиками , соединяющими между собой (по принципу ключ — замок ) соответствующие друг другу по химическому строению концы оснований (А — Т и Г — Ц). Допустим, нить ДНК представлена последовательностью ТТТАТТГТТГЦТ. Разобьем ее на слова из трех букв ТТТ АТТ ГТТ ГЦТ — это и есть генетический код, в котором каждое слово (триплет, или кодон) кодирует определенную аминокислоту. Так, выбранная последовательность кодирует короткий пептид (небольшой белок) из четырех аминокислот фенилаланина, изолейцина, валина и аланина. Когда говорят об экспрессии генов (реализации в клетке закодированной в ДНК информации), подразумевают, что кодоны считываются специальными ферментами клетки с образованием промежуточной информационной молекулы и-РНК (этап транскрипции), считывание триплетов которой (этап трансляции) происходит в рибосомах с образованием белков. [c.81]

    При исследовании регуляторных свойств компонентов, выделенных из различных тканевых экстрактов, нами была выдвинута концепция о сушествовании в организме цитомединов, представляющих собой одну из групп информационных молекул, которые участвуют в поддержании структурного и функционального гомеостаза клеточных популяций (Морозов, Хавинсон, 1996). [c.87]

    Расщепление исходного сырья, поступающего в клетку синтез новых молекул, потребных клетке именно сейчас обеспечение энергетических резервов наработка материала, который потребуется клетке, когда она приступит к делению и приготовится дать жизнь двум дочерним клеткам синтез информационных молекул в ядре. Все эти и множество других процессов протекают одновременно. Как же организовано в клетке распределение ее энергетических и материальных ресурсов Далее как обеспечивается транспорт в пределах мнкрорасстояний Каким образом вновь построенная белковая молекула от места синтеза перемещается к месту, где она нужна для работы Перемещается на расстояния, которые нередко в тысячи раз превышают ее размеры Что и как управляет этим процессом  [c.163]


    Таким образом, клетка — это миниатюрная фабрика, ведущая быструю, организованную химическую деятельность. В условиях соответствующих молекулярных воздействий фермент деловито синтезирует отрезки информационной РНК. Рибосома запрыгивает на каждую информационную молекулу РНК, двигается вдоль нее, считывая ее последовательность оснований и соединяя друг с другом аминокислоты (которые доставили ей молекулы тРНК) с тем, чтобы создать полипептидную цепь, которая, по завершении этого процесса, свернется и станет белком. Природа изобрела сборочный конвейер за несколько миллиардов лет до Генри Форда. Более того, этот сборочный конвейер производит много разных, весьма специфических белков, механических инструментов клетки, которые сами создают и восстанавливают органические химиче-< кие молекулы для того, чтобы обеспечить сборочный конвейер сырьем, а также все молекулы, необходимые для устройства структуры фабри- и, снабжают ее энергией, избавляют от отходов и выполняют другие Функции. Поскольку все это так сложно, то читателю не обязатель- [c.57]

    Краткая характеристика проблемы. Вопрос о причинах хиральности биомолекул, то есть существования в надмолекулярных структурах лишь одной из двух возможных стереоконфигураций элементов, например Ь-аминокислот в белках или Ь-са-харов в полисахаридах и нуклеиновых кислотах, относится к числу нерешенных современной наукой [13, 26, 124]. Значение хиральности молекул для биоструктур сводят к таким факторам как упрощение процессов молекулярного узнавания, инструктирования информационных молекул, обеспечения однозначности протекания химических реакций [13]. Благодаря хиральности создается большая прочность конструкции полимеров, например, образование а-спиралей и р-структур из полипептидов, а также возможность возникновения кооперативных эффектов. Проблема происхождения хиральности имеет два аспекта установления казуального, причинного фактора, приведшего к хиральности элементов структур, и выяснение причины предпочтения того или иного знака хиральности. Что касается первого аспекта, то большая часть существующих подходов, обобщенных в работах [13, 26, 124], сводится к следующим типам объяснений гипотезы о космическом происхождении хиральности воздействие гиротропических минералов одного знака циркулярная поляризация солнечного света, нарушение чет-10СТИ в слабых взаимодействиях и ряд других. На второй вопрос обычно отвечают, что это связано со случайной флуктуа- [c.116]

    Несмотря на то что феномен фагоцитоза описан сравнительно давно, в его механизме есть много неясного, а полнота описания биохимических и биофизических процессов явно не достигла целостности и законченности. Выяснено многое роль гликокаликса плазмалеммы в эндоцитозе значение цитоскелетных сократительных структур для инвагинации плазмалеммы и образования эндосом трансформация захваченных веществ при участии системы ГЭРЛ рециклизация рецепторов и репарация плазмалеммы после утраты ее части в ходе эндоцитоза вовлечение эндоцитоза в межклеточный и внутриклеточный транспорт информационных молекул. Тем не менее единой концепции цитоза не существует, [c.91]

    Таким образом, дискуссионным остается вопрос о том, на каком этапе эволюционного процесса нуклеиновые кислоты сформировались как информационные молекулы. Согласно одним представлениям на начальном этапе эволюции роль последних выполняли белковоподоб- [c.174]

    Что же представляли собой самые ранние генетические системы, если интроны действительно имеют столь древнее происхождение В частности, как это предположение соотносится с вопросом о том, какие информационные молекулы возникли раньще, ДНК или РНК Имеются свидетельства в пользу того, что РНК появилась первой и стала основой самых ранних кодирующих систем. Например, рибосомная, транспортная и матричная РНК представляют собой центральные элементы аппарата трансляции всех организмов, а также лежат в основе функционирования генетического кода. Поэтому можно думать, что эти молекулы существовали до момента эволюционной дивергенции про- и эукариот и присутствовали в самых ранних генетических системах. Более того, короткие молекулы РНК могут синтезироваться на РНК-матрице в ходе чисто химических реакций в отсутствие каких бы то ни было белков. Кажется вполне вероятным поэтому, что первые РНК были самореплипирующимися молекулами, которые транскрибировались и транслировались при помощи примитивных механизмов. Молекулы РНК могут также выступать в роли катализаторов модификации РНК. Так, компонента РНКазы Р Е. соИ, представленная молекулой РНК, катализирует сайт-специфическое расщепление предшественников транспортных РНК (разд. 3.3). Кроме того, как уже упоминалось, интроны в пред-щественниках рибосомных РНК у некоторых простейших и грибов могут вырезаться без участия белков. ДНК, насколько известно, не катализирует ни одну из этих реакций. [c.18]

    Экспериментально было показано, что существует информационная молекула — посредник между ДНК и белком. Этим посредником оказалась РНК, которая, в отличие от ДНК, состоит только из одной цепи. Однако ее химический состав оказался очень похожим на ДНК. И РНК, и ДНК построены из одинаковых основных строительных блоков. РНК содержит основания А (аденин), G (гуанин), С (цитозин) и U (урацил). Соотношение между двумя нуклеиновыми кислотами следующее. Если порядок оснований в ДНК 3 —T GAATA—5, то порядок оснований в РНК (копия которой синтезируется по ДНК-матрице) будет 5 -AG UUAU-3, где вместо Т (тимин) теперь стоит U (урацил). Мы уже упоминали это правило в гл. 1, табл. 1.2. [c.51]


Смотреть страницы где упоминается термин Информационные молекулы: [c.144]    [c.76]    [c.319]    [c.116]    [c.49]    [c.133]    [c.53]    [c.58]    [c.307]   
Химия Краткий словарь (2002) -- [ c.129 ]




ПОИСК





Смотрите так же термины и статьи:

Информационная РНК



© 2025 chem21.info Реклама на сайте