Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод аллотропные модификации

    Физические свойства. Аллотропные модификации углерода — алмаз, графит и карбин — имеют резко различные физические свойства, что объясняется строением их кристаллических решеток. [c.206]

    Охарактеризовать аллотропные модификации углерода и указать причину различия их свойств. [c.235]

    Карбин — аллотропная модификация углерода, имеющая [c.689]

    Свойства. Углерод образует три аллотропные модификации алмаз, графит и карбин. [c.168]


    Аллотропные модификации углерода отличаются химической активностью. Согласно энтальпиям образования наиболее ста- [c.187]

    Так, элемент кислород образует две аллотропные модификации — кислород О2 и озон Оз, элемент углерод также две — алмаз и графит, несколько модификаций образует сера, фосфор, железо и др. [c.119]

    Различие аллотропных модификаций углерода — яркий пример влияния кристаллического строения твердых веществ на их физические свойства. В графите атомы углерода расположены в параллельных слоях, образуя гексагональную сетку. Внутри слоя атомы связаны гораздо сильнее, чем один слой с другим, поэтому свойства графита сильно различаются по разным направлениям. Так, способность графита к расслаиванию связана с разрывом более слабых меж-слойных связей по плоскостям скольжения. [c.131]

    Физические свойства. Полученный указанными выше способами аморфный кремний представляет собой бурый порошок с температурой плавления 1420°С. Существует и другая аллотропная модификация кремния — кристаллический кремний. Это твердое вещество темно-серого цвета со слабым металлическим блеском, обладает тепло-и электропроводностью. Кристаллический кремний получают перекристаллизацией аморфного- кремния. Аморфный кремний является более реакционноспособным, чем химически довольно инертный кристаллический кремний. Кристаллический кремний — полупроводник, его электропроводность возрастает при освещении и нагревании. Это обусловлено строением кристаллов. Структура кристаллического кремния аналогична структуре алмаза. В его кристалле каждый атом окружен тетраэдрически четырьмя другими и связан с ними ковалентной связью, хотя эта связь значительно слабее, чем между атомами углерода в алмазе. В кристалле кремния даже при обычных [c.419]

    Наряду с исследованиями физических и химических свойств вновь открытых аллотропных модификаций углерода, активно продолжаются и [c.3]

    Некоторые химические элементы образуют несколько простых веществ. Это явление получило название аллотропии. Наиример, кислород имеет две аллотропные модификации (или видоизменения), которые различаются составом молекул кислород О2 и озон О3. Аллотропные видоизменения элемента углерода — алмаз и графит имеют разное строение кристаллов. [c.14]

    Каковы аллотропные модификации углерода Чем обусловлено различие физических свойств алмаза и графита Где применяются алмаз и графит  [c.416]

    Физические свойства. Аллотропные модификации углерода— алмаз и графит — резко,отличаются по физическим свойствам. Алмаз — прозрачные кристаллы, очень твердые. Твердость алмаза объясняется строением его кристаллической решетки (рис. 15). Все четыре элертрона каждого атома углерода в алмазе образуют прочные ковалентные связи с другими атомами углерода. Кристаллическая решетка алмаза имеет тетраэдрическое строение. Расстояние между всеми атомами уг/ерода одинаковое. Алмаз не проводит электрический то1 , так как в его кристаллической решетке отсутствуют свободные электроны. [c.410]


    Углерод как простое вещество известен в виде двух аллотропных модификаций — алмаза и графита (см. 3, 8, гл. IV и б, гл. V). [c.309]

    Как указано выше, электропроводимость вещества зависит от кристаллической структуры. Типичный пример тому —алмаз и графит, представляющие собой аллотропные модификации углерода, из которых алмаз практически не проводит электрический ток, а графит проявляет высокую электропроводимость. [c.179]

    Углерод во всех аллотропных модификациях не обладает запахом и вкусом, плавится исключительно трудно, не растворяется в воде и органических растворителях, а растворим в расплавленных металлах, например в железе. [c.462]

    Однако в отличие от углерода атомы кремния как элемента третьего периода л-связей друг с другом образовывать не могут. Поэтому для кремния не характерна аллотропия, ои образует одну алмазоподобную модификацию, где атомы кремния связаны только а-связями за счет перекрывания 5рЗ-гибрид-ных орбиталей. Такой кристаллический кремний представляет собой темно-серое металловидное тело, обладающее электропроводностью, т. е. кремний по физическим свойствам близок к металлам. Так называемый аморфный кремний (коричневый порошок) не является аллотропной модификацией. Он представляет собой мелкокристаллическую форму алмазоподобной модификации. [c.249]

    Нахождение в природе. В природе углерод находится и в свободном виде, и в виде соединений. Свободный углерод известней в виде двух аллотропных модификаций алмаза и графита. [c.409]

    Однако молекула j имеет избыточные орбитали и недостаточное для их заполнения число электронов, поскольку вокруг каждого ее атома недостает электронов для завершения октета. Каждый атом углерода обладает тенденцией к образованию четырех двухэлектронных связей, как это видно на примере двух его основных аллотропных модификаций - алмаза и графита (рис. 14-5). По аналогичной причине Sij также является электроннодефицитной системой, которая не существует в виде индивидуальных молекул в кристаллическом кремнии. Структура кристаллического кремния скорее напоминает структуру алмаза (рис. 14-5,а). [c.603]

    Простые вещества. Углерод образует пять аллотропных модификаций кубический алмаз (см. рис. 5.22), гексагональный алмаз, графит (см. рис. 5.23) и две формы карбина. Гексагональный алмаз найден в метеоритах (минерал лонсдейлит) и получен искус-ственгю. [c.287]

    Кроме рассмотренных выше основных аллотропных модификаций, углерод существует еще в нескольких формах. Это так называемые углеродные материалы. К ним относятся уголь (кокс, древесный уголь), технический углерод (сажа), стеклоуглерод. [c.169]

    Сера представляет собой твердое хрупкое вещество. Ее можно временно перевести в пластическую форму (аллотропная модификация), быстро охлаждая расплав серы. Расплавленная сера при различных температурах тоже существует в различных аллотропных формах. Сера растворима в дисульфиде углерода. [c.197]

    Родоначальник подгруппы — углерод (лат. сагЬопеит) существует в свободном виде в двух аллотропных модификациях — графит и алмаз,— резко различающихся по строению и свойствам (см. ниже). Углерод — один из важнейших элементов в природе. Его соединения составл.чгот основу живей природы — флоры и фауны. [c.130]

    У углерода сугцествуют три аллотропные модификации (три простьис вещества) — алмаз, графит и карбин. [c.156]

    Энергия плазменных колебаний валентных электронов в трех аллотропных модификациях углерода отличается [1] для алмаза Шр=34 эВ, для графита С0р=27 эВ. Для третьей аллотропной формы - карбина - энергия (а-иг)-плазмона, полученная в разньп( работах [1-2], различна (22-24 эВ). Однако для ряда карбнноидов из рентгенофотоэлектронных спектров ls-лннии углерода с плазменным сателлитом нами получено значение энергии плазмона 20.6+0.4 эВ. [c.47]

    В настоящей работе исследуется новая аллотропная модификация yrлqюдa -ГЦК - углерод, полученный различными методами в условиях ионно-сгимулированной конденсации углерода [1], в процессе травления пленки иолиЕфисталлического алмаза в плазме водорода [2], методом плазмо-химического синтеза из углеродной плазмы [3]. [c.178]

    Фуллерены являются единственной из трех известных в настоящее время аллотропных модификаций углерода (графит, алмаз, фуллерены), которые обладают растворимостью в широком классе органических растворителей [20]. Такая особенность фуллеренов связана с их молекулярной структурой, в отличие от сшитых полимерных сеток графита и алмаза. Свойство растворимости фуллеренов имеет широкое практическое применение. Прежде всего - в процессах выделения фуллеренов из продукта термического разложения графита в электрической дуге - фуллеренсодержащей сажи, а также при разделении смесей фуллеренов различного сорта, например, гюсредством хроматофафических методов. Фуллеренсодержащая сажа (Ф-сажа) представляет собой мелкодисперсный порошок черного цвета, основную долю которого (80-90 % по массе) составляет аморфный углерод. Остальные 10-20 % по массе Ф-сажи составляют фуллерены (80-95 % С60, 5-20 % - С70 и следовые количества высших фуллеренов - С7б, С78, С84, до С100). При обработке Ф-сах<и органическими растворителями (эксфакции) фуллерены количественно переходят в раствор, тогда как мафица из аморфного углерода является нерастворимой частью Ф-сажи. [c.40]

    Карбин впервые был получен синтетически, но позднее обнаружен и в природе. Это черный мелкокристаллический порошок, относящийся к наиболее стабильной форме углерода. По электрическим свойствам карбин является полупроводником, его электрическое сопротивление при облучении светом резко уменьшается. Различают а-карбин и /3-карбин. Первая аллотропная модификация карбина представляет собой линейную полимерную цепь из ацетиленовых фрагментов (полиин)  [c.407]


    Способность элемента к образованию аллотропных модификаций обусловлена строением атома, от которого зависит тип химической связи, а также строение молекул и кристаллов. Так, например, алмаз, графит, карбин и поликумулен состоят только из атомов углерода, но отличаются своими физическими свойствами и химической активностью. Объясняется это тем, что эти модификации углерода обладают разной кристаллической структ турой, разными связями между атомами. [c.5]

    Характерно, что отдельнУе аллотропические видоизменения одного и того же простого вещества могут в высокой степени различаться между собой по своим полупроводииковым свойствам. Так, селен известен в виде нескольких аллотропных модификаций. Из них только одна — серый (гексагональный) селен — обладает свойствами полупроводника, а в остальных модификациях это изолятор. Далее, углерод в виде алмаза — типичный диэлектрик, в то же время графит — полупроводник. [c.453]

    По химическому составу полупроводники весьма разнообразны. К ним относятся элементарные вещества, как, например, бор, графит, кремний, германий, мышьяк, сурьма, селен, а также многие оксиды ( uaO, ZnO), сульфиды (PbS), соединения с индием (InSb) и т. д. и многие соединения, состоящие более чем из двух элементов. Известны и некоторые органические соединения обладающие полупроводниковыми свойствами. Таким образом, к полупроводникам относится очень большое число веществ. Обусловлены полупроводниковые свойства характером химической связи (ковалентным, или ковалентным с некоторой долей ионности), типом кристаллической решетки, размерами атомов, расстоянием между ними, их взаиморасположением. Если химические связи вещества носят преимущественно металлический характер, то его полупроводниковые свойства исключаются. Зависимость полупроводниковых свойств от типа решетки и от характера связи ясно видна на примере аллотропных модификаций углерода. Так, алмаз — типичный диэлектрик, а графит — полупроводник с положительным температурным коэффициентом электропроводности. То же у олова белое олово — металл, а его аллотропное видоизменение серое олово — полупроводник. Известны примеры с модификациями фосфора и серы. [c.298]

    Многие химические элементы образукэт несколько простых веществ, различных по строению и свойствам. Это явление называегся аллотропией, а образующиеся вещества - аллотропными видоизменениями или модификациями. Так, элемент кислород образует две аллотропные модификации - кислород и озон элемент углерод - три а,пмаз, графит и карбин несколько модификаций образует элемент фосфор. [c.11]

    Однако для угля более характерны реакции, в которых он рсяв-ляет восстановительные свойства. Это имеет место при полном сгорании углерода любой аллотропной модификации  [c.130]

    Физические и химические свойства углерода. В виде простых веществ углерод встречается в природе в трех аллотропных модификациях — алмаза, графита и карбина. Все они представляют со- [c.182]

    Если железную проволоку нагревать, пропуская через нее электрический ток нарастающей силы, то сначала проволока все более провисает, так как от нагревания железо расширяется. Но к-ак только температура достигает 910°С, проволока внезапно натягивается, т. е. железо сжимается. При этой температуре расположение атомов в кристаллической решетке железа меняется, решетка уплотняется и обыкновенное железо, или а-железо, превращается в другую аллотропную модификацию — у-железо. Оно, в отличие от а-железа, немагнитно и способно науглероживаться, т. е. впитывать атомы углерода. Получается [c.153]


Смотреть страницы где упоминается термин Углерод аллотропные модификации: [c.151]    [c.3]    [c.91]    [c.337]    [c.407]    [c.13]    [c.249]    [c.250]    [c.358]   
Химический тренажер. Ч.1 (1986) -- [ c.8 , c.15 ]

Пособие по химии для поступающих в вузы 1972 (1972) -- [ c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Углерод модификации



© 2025 chem21.info Реклама на сайте