Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кремний, кристаллическая структура

    Физические свойства. Полученный указанными выше способами аморфный кремний представляет собой бурый порошок с температурой плавления 1420°С. Существует и другая аллотропная модификация кремния — кристаллический кремний. Это твердое вещество темно-серого цвета со слабым металлическим блеском, обладает тепло-и электропроводностью. Кристаллический кремний получают перекристаллизацией аморфного- кремния. Аморфный кремний является более реакционноспособным, чем химически довольно инертный кристаллический кремний. Кристаллический кремний — полупроводник, его электропроводность возрастает при освещении и нагревании. Это обусловлено строением кристаллов. Структура кристаллического кремния аналогична структуре алмаза. В его кристалле каждый атом окружен тетраэдрически четырьмя другими и связан с ними ковалентной связью, хотя эта связь значительно слабее, чем между атомами углерода в алмазе. В кристалле кремния даже при обычных [c.419]


Рис. 53. Кристаллическая структура диоксида кремния Рис. 53. <a href="/info/2548">Кристаллическая структура</a> диоксида кремния
    Рнс. 37. Кристаллическая структура дисульфида кремния [c.208]

    Определить характер связей в кристаллических структурах твердых веществ KF, Ba l. , сера, иод, карбид кремния. [c.51]

    В кристаллическом же состоянии электрические моменты диполей отдельных связей (даже если они и существуют) взаимно скомпенсированы и суммарный собственный электрический момент диполя в кристалле равен нулю. Поэтому исследования поляризационных явлений в кристаллах дают мало информации о направленности связей и структуре. Однако и в кристаллическом состоянии эта направленность существует, что особенно ярко проявляется в кристаллах с преимущественно ковалентной связью (кремний, германий, 1пР, 2п5 и т. п.). Связи в таких кристаллах направлены к вершинам тетраэдра (см. рис. 3 и 4), поэтому подобные вещества часто называют тетраэдрическими фазами. Жесткая пространственная направленность ковалентных связей предопределяет образование рыхлых кристаллических структур с низкими координационными числами (как правило, не выше четырех). Для солеобразных и металлических кристаллов, в которых доминирует, соответственно, ионная и металлическая составляющая связи, характерны плотные и плотнейшие упаковки с координационными числами 6—8 для ионных и 8—12 для металлических решеток. Здесь значительную роль играют размеры взаимодействующих атомов, которые и определяют координационное число в кристаллических решетках. Однако при этом сохраняется определенная направленность химической связи, что проявляется в пространственной периодичности строения кристаллов. На существование электронных мостиков между взаимодействующими атомами указывают [c.82]

    Характер действия катализаторов определяется их химической природой. Так, благодаря носителям, обладающим кислотной природой, — алюмосиликатам аморфной и кристаллической структуры, магний- и цирконий-силикатам, а также фосфатам, катализаторы помимо гидрирующих свойств обладают изомеризующей и расщепляющей способностью. Носители нейтральной природы — окись алюминия, окись кремния, окись магния и др., не придают, как правило, дополнительных свойств катализаторам гидрогенизационных процессов [36]. [c.66]


    Итак, молекулярные сита — это однороднопористые кристаллические структуры, состоящие из диоксида кремния, оксида алюминия и оксидов одно- или двухвалентного металла, природа, последнего определяет радиус пор и, следовательно, сорбционные свойства цеолита. Путем ионного обмена получают молекулярные сита с различными размерами пор. [c.171]

    Известны аморфный и кристаллический кремний. Кристаллический кремний имеет структуру алмаза, обладает металлическим блеском тугоплавкий, очень твердый, полупроводник. [c.68]

    К минеральным адсорбентам относятся синтетические и природные цеолиты — пористые кристаллические алюмосиликаты щелочных и щелочноземельных металлов. В основе кристаллической структуры цеолитов лежат тетраэдры, в центре которых находятся атомы кремния или алюминия, а в вер- [c.230]

    Если в структуре диоксида кремния заменить кремний на углерод, исходная кристаллическая структура не сохраняется. Почему  [c.64]

    Высокомолекулярные соединения, в которых перемещение макромолекул крайне затруднено, характеризуются значениями вязкости в 100 Па-с и выше. Такие вещества практически теряют текучесть и воспринимаются как твердые тела по агрегатному состоянию. Иногда их называют аморфными твердыми тела-м и, подчеркивая этим их отличие от истинно твердых тел — кристаллических. Однако не следует забывать, что по фазовому состоянию они являются жидкими и потому, хотя и неощутимо, могут течь. Так, например, старинные оконные стекла, являющиеся неорганическим полимером диоксида кремния, за много лет становятся несколько толще внизу. Подобное состояние высокомолекулярных соединений в химии полимеров называется стеклообразным или застеклованным. Макромолекулы полимера в застеклованном состоянии связаны друг с другом густой сеткой поперечных межмолекулярных связей, что препятствует их правильной упаковке с образованием кристаллической структуры. [c.87]

    СЯ для образования ковалентных связей в кристаллической структуре кремния, у фосфора остается еще один электрон. При наложении на кристалл электрического поля этот электрон может смещаться в сторону от атома фосфора поэтому говорят, что фосфор является донором электронов в кристалле кремния. Для высвобождения донируемых электронов требуется лищь 1,05 кДж моль эта энергия превращает кристалл кремния с небольшой примесью фосфора в проводник. При введении в кристалл кремния примеси бора возникает противоположное явление. Атому бора недостает одного электрона для построения необходимого числа ковалентных связей в кристалле кремния. Поэтому на каждый атом бора в кристалле кремния приходится одна вакансия на связывающей орбитали. На эти вакантные орбитали, связанные с атомами бора, могут быть возбуждены валентные электроны кремния, что дает возможность электронам свободно перемещаться по кристаллу. Подобная проводимость осуществляется в результате того, что на вакантную орбиталь атома бора перескакивает электрон соседнего атома кремния. Вновь образовавшаяся вакансия на орбитали атома кремния тут же заполняется электроном со следующего за ним другого атома кремния. Возникает каскадный эффект, при котором электроны перескакивают от одного атома к следующему. Физики предпочитают описывать это явление как движение положительно заряженной дырки в противоположном направлении. Но независимо от того, как описывается это явление, твердо установлено, что для активации проводимости такого вещества, как кремний, требуется меньше энергии, если в кристалле содержится небольшое количество донора электронов типа фосфора либо акцептора электронов типа бора. [c.632]

    Сравнивая серу и ее гомологи с хлором, бромом и иодом, наблюдается по ходу сверху вниз в столбце в обоих группах повышение тенденции к полимеризации и образованию сложно построенных кристаллических структур это явление еще заметнее при переходе к V группе, т. е. к фосфору и его гомологам и далее оно видно очень ярко в IV группе для кремния, германия, олова и свинца. При движении сверху вниз в этих столбцах Системы возрастает металлический характер кристаллических модификаций. [c.205]

Рис. 3. Кристаллическая структура кремния Рис. 3. <a href="/info/2548">Кристаллическая структура</a> кремния
    Для приготовления цеолита смешивают силикат натрия, алюминат нагрня и гидрат окнси натрия. Соотношения этих веществ зависят от того, какого типа цеолит нужно приготовить. Смесь вводят в кристаллизатор и выдерживают при 100° несколько часов. Затем крисгаллы и )Омывают водой, добавляют глину в качестве связующей) агента и формуют. Гранулированный цеолит прокаливают при 650". По своей кристаллической структуре цеолит можно рассматривать как соль ноликремневой кислоты, в которой часть атомов кремния заменена на атомы алюминия. [c.24]


    В последнее время применяются так называемые эпитаксиальные пленки. Их получают наращиванием полупроводника на основной кристалл. Пленки должны точно повторять кристаллическую структуру подложки, но могут отличаться типом проводимости, вследствие чего можно создать р—л-переходы с заданной концентрацией носителей зарядов, получить низкоомные слои на высокоомных полупроводниках и наоборот. Широко используются в промышленности методы наращивания эпитаксиальных пленок кремния и германия в случае восстановления тетрахлоридов очень чистым водородом при повышенной температуре  [c.249]

    Физические свойства. Кристаллический кремний - вещество темносерого цвета со стальным блеском. Структура кремния аналогична структуре алмаза. В его кристалле каждый атом окружен тетраэдриче-ски четырьмя другими и связан с ними ковалентной связью, которая значительно слабое, чем между атомами углерода в алмазе. [c.255]

    В периодической системе нет резкой границы между элементами с металлической структурой и элементами с ковалентной каркасной структурой (рис. 14-8). Это видно из того, что кристаллы некоторых элементов обладают свойствами, промежуточными между проводниками и изоляторами. Кремний, германий и а-модификация олова (серое олово) обладают кристаллической структурой алмаза. Однако межзонная щель между заполненной и свободной зонами в этих кристаллах намного меньше, чем для углерода. Так, ширина щели для кремния составляет всего 105 кДж моль (Как мы уже знаем, для углерода она равна 502 кДж моль .) Для германия ширина межзонной щели еще меньше, 59кДж моль а для серого олова она лишь 7,5 кДж моль Ч Металлоиды кремний и германий называются полупроводниками. [c.631]

    Беспримесный кремний с идеальной кристаллической структурой вблизи абсолютного нуля должен быть изолятором. Полностью укомплектованная валентная зона и вакантная зона проводимости разделены энергетическим зазором (Д = 1,21 эВ). Валентная зона представляет собой систему очень близко расположенных энергетических уровней Зр-электронов атомов кремния, составляющих кристалл. Зона проводимости — аналогичная совокупность Зй(-электронных состояний. При повышении температуры отде.иьные парноэлектронные связи нарушаются. Поглощая тепловую энергию, некоторые электроны нарушенных связей переходят в зону проводимости. В результате кремний обнаруживает собственную проводи- [c.200]

    Изучение влияния содержания окиси кремния на свойства промышленных алюмокобальтмолибденовых и алюмоникельмолибдено-вых катализаторов показало, что введение 3102 увеличивает объем и средний радиус пор, повышает в 1,5 раза механическую прочность катализатора. При этом возрастают расщепляюш,ая и изомеризующая активности катализаторов У Большое значение в настоящее время уделяется катализаторам на цеолитной основе. Эти катализаторы обладают высокой активностью и хорошей избирательностью, а кроме того позволяют часто проводить процесс без предварительной очистки сырья от азотсодержащих соединений. Содержание в сырье до 0,2% азота практически не влияет на их активность Применение цеолитных катализаторов часто позволяет проводить процесс при более низкой температуре Повышенная активность катализаторов на основе цеолитов объясняется более высокой концентрацией активных кислотных центров в кристаллической структуре по сравнению с аморфными алюмосиликатными катализаторами [c.322]

    Цеолитные i лтализаторы значительно более устойчивы к нагреву и обработке водяным паром. Их структура не деформируется даже при нагреве до 1100 °С. Считается, что повышенная стабильность обусловлена геометрической структурой кристаллической решетки цеолита. Влияют на нее также природа обменивающегося катиона, степень обмена, соотношение оксидов кремния и алюминия. Последнее подтверждает рис. 5.5. Природа обменивающегося катиона оказывает сильное влияние на стабильность цеолитов. Температура, при которой разрушается кристаллическая структура, возрастает с увеличением размера катиона в ряду щелочных металлов, что обусловлено способностью различных катионов заполнять пустоты в кристалле после дегидратации. Трехвалентные катионы образуют наиболее стабильные цеолиты. В промышленных катализаторах содержание натрия поддерживают на минимально возможном уровне для предотвращения деформации структуры цеолита при эксплуатации в реакторе. [c.107]

    К твердым атомных веществам относится огромное количество органических и неорганических полимеров, такие простые твердые вещества, как алмаз, кремний и другие неметаллы и металлы, а также твердые ионные соединения. Объединяющим показателем для них является то, гго эти вещества построены посредством межатомных связей. В отличие от молекулярных твердых соединений, которые всегда имеют кристаллическую структуру, атомные твердые вещества могут обладать как кристаллической, так и аморфной структурой. Металлы и ионные соединения характеризуются кристагшической структурой и в обычных условиях не образуют аморфных тел. Для полимерных материалов характерно пребывание в аморфном состоянии. Главным структурообразующим фактором для полимеров служат ковалентные связи, образующие одно-, двух- или трехмерные остовы -макромолекулярные части структуры полимерного материала. При помощи дополнительного структурообразующего фактора - ван-дер-ваальсовых и [c.108]

    Германий и кремний переходят в водные растворы в виде производных от соответствующих двуокисей (ОеОз, SiOj). Таким образом, процесс травления рассматриваемых элементов состоит из реакций окисления и растворения двуокисей. В свою очередь, каждая из этих реакций может распадаться на множество последовательных стадий, имеющих различные единичные скорости. Скорость результирующего процесса и свойства данного травителя зависят от соотношения между указанными единичными скоростями. Когда наименьшей является единичная скорость взаимодействия кремния или германия с окислителем, травитель обладает ярко выраженными селективными свойствами и выявляет кристаллическую структуру обрабатываемого образца. [c.111]

    Свойства УУКМ изменяются в широком диапазоне. Прочность карбонизованного УУКМ пропорциональна плотности. Графитация карбонизованного УУКМ повышает его прочность. Прочность УУКМ на основе высокопрочных УВ выше прочности КМ на основе высокомодульных УВ, полученных при различных температурах обработки. К уникальным свойствам УУКМ относится высокая температуростойкость в инертных и восстановительных средах. По способности сохранять форму и физико-механические свойства в этих средах УУКМ превосходит известные конструкционные материалы. Некоторые УУКМ, особенно полученные карбонизацией углепластика на основе органических полимеров, характеризуются увеличением прочности с повышением температуры эксплуатации от 20 до 2700 С. При температурах выше 3000°С УУКМ работоспособны в течение короткого времени, так как начинается интенсивная сублимация графита. Чем совершенней кристаллическая структура графита, тем при более высокой температуре и с меньшей скоростью происходят термодеструктивные процессы. Свойства УУКМ изменяются на воздутсе при длительном воздействии относительно невысоких температур. Так, при 400 - 650°С в воздушной среде происходит окисление УУКМ и, как следствие, быстрое снижение прочности в результате нарастания пористости. Окисление матрицы опережает окисление УВ, если последние имеют более совершенную структуру углерода. Скорость окисления УУКМ снижается с повышением температуры их получения и уменьшением числа дефектов. Эффективно предотвращает окисление УУКМ пропитка их кремнийорганическими соединениями из-за образования карбида и оксида кремния. [c.92]

    И сам углерод, и его аналоги могут существовать в нескольких аллотропических модификациях. Если для типичных неметаллов, например кислорода и серы, явление аллотропии связано с возможностью образования молекул различного состава, то в простых телах кристаллической структуры, например у у1 лерода, олова, кремния, аллотропия связана с возможностью построения кристаллических решеток различного типа. Так, в кристаллической структуре алмаза каждый атом углерода связан четырьмя связями с другими атомами таким образом, что все углы между связями равны 109,5°. Модель кристаллической решетки алмаза можно получить, если поместить атом углерода в центр тетраэдра на пересечении его высот и соединить его с четырьмя Е ершинами тетраэдра, поместив в них еще четыре атома углерода рассматривая каждый из этих атомов как центр нового тетраэдра, можно таким путем воспроизвести всю решетку. [c.95]

    Кристаллическая структура элементов В -подгруппы подчиняется правилу Юм-Розери, согласно которому координационное число фиксированного атома п = 8 — Ы, гд,е N — номер группы периодической системы, в которой находится данный элемент. Например, в кристаллическом иоде и броме (7-я группа) каждый атом имеет по одному ближайшему соседу, что соответствует молекулам Ь и Вгг. Эти молекулы связаны со своими соседями ван-дер-ваальсовыми силами, образуя молекулярные кристаллы. Селен и теллур (6-я группа) образуют кристаллическую структуру в виде спиральных цепочек с координационным числом 2. Атомы элементов пятой группы (Аз, 5Ь, В1) упаковываются в решетке с координационным числом 3 + 3. Углерод, кремний и германий (4-я группа) образуют типично ковалентные кристаллы с координационным числом 4. [c.168]

    Кристаллическая структура фосфата алюминия А1РО4 аналогична структуре диоксида кремния. Чем это объясняется  [c.67]

    Характерной чертой строения силикатов является воможность замещения в кристаллической структуре ионов кремния несколько большими по размеру ионами алюминия. Отношение Гк Г для алюминия, как отмечалось, составляет 0,415, т. е. является пограничным. Поэтому координационное число алюминия может быть как 4, так и 6. Алюминий с координационным числом 4 может входить в кремнекислородный мотив. Алюминий с координационным числом 6 выполняет роль катиона. Эта двойственность алюминия, установленная еще В. И. Вернадским, затрудняет изучение силикатов и алюмосиликатов. [c.29]

    Оашвной природной формой двуокиси кремния является минерал кварц (плотность 2,65 г/сл , показатель преломления 1,55). Гораздо реже встречаются характеризующиеся несколько иными кристаллическими структурами и меньшей плотностью (2,3) минералы тридимит и кристобалит. При медленном нагревании кварца сначала (573 °С) происходит некоторое изменение его собственной кристаллической структуры (а-кварц- - -кварц), после чего он последовательно переходит в две другие формы и лишь затем плавится  [c.588]

    Нагревание расплава сопровождается перестройкой ближнего порядка в сторону более плотной структуры и металлизацией связей. Температурный интервал, в котором происходят эти изменения, зависит от прочности сил, обусловливающих рыхлую упаковку атомов в твердом состоянии. Он наибольший у алмаза, кремния и германия. Атомы этих элементов имеют внешнюю электронную конфигурацию П5 р . Их электроотрицательность настолько значительна, что при формировании кристаллических структур тенденция к образованию ковалентных связей путем спаривания электронов в состоянии гибридизации преобладает над стремлением к отделению электронов. Алмаз, кремний и германий образуют тетраэдрическую решетку, в которой каждый атом ковалентно связан с четырьмя ближайшрши соседями. [c.182]

    Подобная тенденция прослеживается и в изоэлектронном ряду кремния у самого кремния кристаллическая решетка типа алмаза, у А1Р — кубическая (сфалерит), а уже у MgS и, тем более, у Na l реализуется ионная решетка с к. ч. 6. Различие между структурами вертикальных изоэлектронных аналогов ВеО и MgS определяется большей ионностью связи в последнем. [c.51]


Смотреть страницы где упоминается термин Кремний, кристаллическая структура: [c.259]    [c.259]    [c.58]    [c.508]    [c.341]    [c.212]    [c.117]    [c.567]    [c.179]    [c.345]    [c.145]    [c.112]    [c.292]    [c.281]    [c.62]    [c.22]    [c.75]   
Графит и его кристаллические соединения (1965) -- [ c.85 ]




ПОИСК





Смотрите так же термины и статьи:

Кристаллическая структура



© 2024 chem21.info Реклама на сайте