Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гибриды ДНК и РНК

    Но для бензола можно написать вторую, совершенно равноценную формулу Кекуле, в которой простые и двойные связи поменяются местами по сравнению с первой формулой. Реальная молекула бензола описывается как резонансный гибрид двух структур Кекуле электроны, ответственные за образование двойных связей, делокализованы, размазаны по кольцу, так что все связи между атомами углерода в бензоле равноценны и являются промежуточными между классическими одинарными и двойными связями. Именно в этом состоит причина повышенной стабильности и особенностей химического поведения бензола. [c.162]


Рис. 13-13. Тригонально-пирамидаль-ная структура молекулы N113. Валентный угол 6 Н—N—Н равен 107°, что очень близко к значению 109,5°, предсказываемому моделью связи с участием зр -гибридов (см. рис. 13-12). Рис. 13-13. Тригонально-пирамидаль-ная <a href="/info/103893">структура молекулы</a> N113. <a href="/info/7183">Валентный угол</a> 6 Н—N—Н равен 107°, что очень близко к значению 109,5°, предсказываемому <a href="/info/133080">моделью связи</a> с участием зр -гибридов (см. рис. 13-12).
    Обе резонансные структуры показывают, что кольцо должно быть образовано чередующимися простыми и двойными связями. Однако структурные исследования обнаруживают, что все углерод-углеродные связи имеют одинаковую длину, как и следует ожидать для резонансного гибрида двух структур. Полную симметрию молекулы бензола можно изобразить при помощи одной структуры со специальным пунктирным обозначением  [c.478]

    В настоящее время принято представлять бензол как резонансный гибрид, состоящий из двух структур Кекуле. Символ применяется для изобра кения резонанса, а не колебания или равновесия между двумя или более структурами (ХУП). [c.396]

    Оправдать такие льюисовы структуры О2 может только предположение об их резонансе, т.е. представление об истинной электронной структуре О 2 как о резонансном гибриде двух указанных выше структур с неспаренными электронами. Но такой подход представляется искусственным. Проще вместо льюисовых структур судить об электронном строении двухатомных молекул, пользуясь представлениями о молекулярных орбиталях. [c.529]

    Если ароматическая система изображена таким способом, то важно знать, что ароматическая молекула не имеет ни одной иа этих структур, а представляет нечто среднее между ними. Как говорят, это резонансный гибрид двух структур. [c.396]

    Льюисовы кислоты и льюисовы основания. Резонансные структуры и резонансные гибриды. Смысл степеней окисления. [c.465]

    Бросая взгляд на изменение представлений о конформации с 1950 г. по настоящее время, отметим, что Основное различие во взглядах касалось двух вопросов а) отвечает ли конформации только оптимальное расположение атомов в пространстве (минимум потенциальной энергии) или любое мгновенное расположение б) каким образом отграничить конформационную изомерию От других ее видов (в частности, от конфигурационной), В 1950 г, Бартон писал о ненапряженных расположениях в пространстве, т. е,, казалось бы, склонялся к варианту оптимального рас- положения. Однако, по существу, ненапряженная си- стема — конструкция условная, и поэтому его определение было двусмысленным и неработоспособным. В последующей публикации 1953 г, Бартон уточнил ...расположения в пространстве атомов молекулы, которые свободны от углового напряжения (это уточнение ничего не изменило)—и тут же указал в качестве примера на конформации этана, возможное число которых бесконечно. Значит, конформации в его понимании отвечало произвольное мгновенное расположение атомов, что подтверждается и указанием на тождественность терминов конформация и констелляция (в определении Прелога). Первые определения Бартона представляли странный гибрид альтернативных взглядов на понятие конформации. В то же время Прелог определенно называл констелляцией п]роизвольное расположение атомов, однако включал в сферу действия понятия лишь ротационную изомерию. Близким по смыслу и непротиворечивым было" И несколько более позднее определение У. Клайна 19М г.) Термин конформация обозначает различные расположения в пространстве атомов в ёдин  [c.131]


    Двустороннюю стрелку, являющуюся символом наложения резонансных структур, не следует путать с символом, состоящим из двух стрелок, которые направлены в противоположные стороны ( ), и означающим протекание обратимой химической реакции. Двусторонняя стрелка вовсе не означает, что молекула или ион совершает беспрерывные переходы между двумя структурами. Она лишь говорит о том, что электронная формула NOJ представляет собой нечто среднее между двумя резонансными структурами-их гибрид. Если для молекулы или иона можно записать две или несколько резонансных структур, электронная формула такой частицы рассматривается как резонансный гибрид этих структур. [c.478]

    Электронное строение тиоцианатного иона, N 8 , может быть представлено гибридом двух резонансных структур. Запишите эти две структуры и определите в каждой из них порядок связей углерод - азот и углерод—сера. [c.507]

    Резонансному гибриду шести эквивалентных структур [-VI для 80 должен отвечать средний порядок связи сера—кислород, равный 1 . С такой моделью, предсказывающей для ЗО частично двоесвязный характер, согласуется тот факт, что наблюдаемая длина связей в 80 (1,49 А) на [c.480]

    В насыщенных углеводородах каждый атом углерода использует четыре sp -гибрида для связывания с четырьмя группами, расположенными вокруг него в тетраэдрической конфигурации в ненасыщенных углеводородах имеются по крайней мере два атома углеводорода в состоянии sp - или sp-гибридизации, которые поэтому не используют всех своих валентных возможностей (присоединяют к себе меньше четырех групп). [c.595]

    Для оксианиона С10 возможны три эквивалентные резонансные структуры, и в каждой из них формальный заряд на атоме С1 равен нулю, а в резонансном гибриде все три связи хлор—кислород эквивалентны  [c.484]

    Что такое резонансный гибрид  [c.504]

    Представления о формальных зарядах, резонансных гибридах и льюисовы определения кислот и оснований широко используются в большинстве начальных курсов органической химии, и студенты, хорошо усвоившие их, легко справятся с последующим применением этих понятий. [c.576]

    Одну из зр -гибридиых орбиталей (ст -орбиталь) занимает непарный электрон, две другие 5р -орбитали участвуют в образовании двух ст-связе N—0 (двух молекулярных Стд - 1 ст -орбиталей). Кроме того, [c.363]

    Необходимость в резонансных структурах возникает во многих случаях, не связанных с требованиями симметрии. Например, сопоставим два хорошо известных аниона-нитрат, NO3, и нитроамид, O2NNH. Поскольку нитрат имеет три эквивалентные связи азот—кислород, его следует описать набором из трех эквивалентных резонансных структур, причем правильной формулой должен быть их резонансный гибрид  [c.478]

    Другая ла/кная особенность полимеризации диеиов, иодобпых бутадиену,— способность радикала бутадиена (как резонансного гибрида) присоединять следующую молекулу мономера тремя различными путями  [c.156]

    Здравый смысл подсказывает, что описание этого иона требует участия всех трех структур. Но поскольку они не эквивалентны, символ резонанса больше не означает необходимости их равномерного смешивания, а лишь указывает на самую необходимость смешивания. Таким образом, двусторонняя стрелка не содержит количественной информации. Когда мы переходим к полуколичественному описанию электронной структуры молекул, приходится указать, что структура III дает больший вклад в резонансный гибрид нитроамидного иона, чем каждая из эквивалентных структур I и II, потому что в структуре III оба формальных отрицательных заряда расположены на атомах кислорода. [c.479]

    Инголд [164] предпочитает другое объяснение. Он приводит аргументы в пользу того, что резонансная форма, которая преимущественно удаляет электроны из о-положения (LVI), требует делокализации только одной гг-связи, в то время как соответствующая форма, которая предпочтительно удаляла бы электроны из /г-положения (LVII), требует делокализации двух я-связей. Было предсказано что влияние LVII на резонансный гибрид будет больше, чем влияние LVI, в результате чего положительный заряд в п-положении будет больше, чем в о-положепии. Таким образом, в соответствии со взглядами Инголда электрофильный реагент преимущественно отталкивается от п-положения. [c.416]

    В значительно ме (ьшен степени, чем электронные облака, перекрывающиеся по оси связи (т. е. гибридиые, 5-электроЕШые или ориентированные вдоль оси связн /7-электронные облака). [c.460]

    Для осуществления непрерывных процессов применяют два ооновных типа аппаратов—реактор (вытегнения и реактор смешения [2]. Третий, особый тип аппарата, который в известной мере является гибридом двух первых, (представляет собой реактор с псевдоожиж внным слоем. [c.12]

    Эта структура 80, удовлетворительна в том отношении, что обе связи сера—кислород эквивалентны п на атоме серы отсутствует формальный заряд однако в такой структуре вокруг атома 8 располагается 10 валентных электронов. Правда, на примере ЗОд мы уже видели, что вокруг центрального атома серы может расположиться и 12 валентных электронов. Есл .г зсс же иагта 1 ать, чтобы вокруг каждого атома было не больше 8 электронов, то для 80 не удается найти единственной льюисовой структуры с эквивалентными связями. Однако можно предположить для 8О2 две льюисовы структуры, в которых одна связь сера—кислород простая, а другая двойная и и.меется формальное разделение зарядов. Удовлетворительным описанием 80, при этом оказывается резонансный гибрид двух таких структур  [c.480]

    Ион С1О2 имеет льюисову структуру резонансного гибрида  [c.500]


    Если для молекулы или комплексного иона можно записать две или несколько приемле.мых льюисовых структур, электронное строение такой частицы описывается всей совокупностью подобных льюисовых структур. Каждая из. них в отдельности называется резонансной структурой, а смешанная структура, образуемая и.ми в совокупности (что символически обозначается двусторонней стрелкой между отдельными структурами), называется резонансным гибридом. [c.502]

    Метан, СН4, имеет четыре эквивалентных атома водорода, присоединенных к центральному атому углерода. Для соединения с четырьмя атомами водорода углероду приходится использовать все свои валентные орбитали. Путем гибридизации одной 2з- и трех 2р-орбиталей можно получить четыре эквивалентные 5р -гибридные орбитали (рис. 13-5). Каждая 5р -ги-бридная орбиталь имеет на одну четверть 5-характер и на три четверти р-характер. Все четыре хр -орбитали направлены к вершинам правильного тетраэдра, поэтому хр -орбитали иногда называют тетраэдрическими гибридами. В результате перекрывания каждой хр -гибридной орбитали с 1х-орбиталью атома водорода образуются четыре локализованные связывающие орбитали. Наилучщее перекрывание между и 1х-орбиталями получается при помещении четырех атомов водорода в вершины правильного тетраэдра, как это показано на рис. 13-6 (где изображен куб, чередующиеся вершины которого образуют вершины упоминаемого тетраэдра). В молекуле метана восемь валентных электронов (четыре от атома углерода и по одному от каждого из четырех атомов водорода), которые должны [c.555]

    Электронное строение многоатомных молекул может быть объяснено образованием локализованных молекулярных орбиталей между каждой парой соседних атомов в молекуле. Для объяснения связи между центральным атомом молекулы (например, углерод в СН4) и присоединёнными к нему периферийными атомами (четыре атома водорода в СН4) часто используют гибридные орбитали, из которых затем строят локализованные орбитали. Если к центральному атому присоединены четыре периферийных атома, для образования локализованных связывающих орбиталей используются четыре эквивалентных sp -гибрида (тетраэдрические гибридные орбитали) при наличии трех периферийных атомов центральный атом использует для образования связей с ними три своих эквивалентных sp -гибрида (плоские тригональные гибридные орбитали) при двух периферийных атомах центральный атом использует два эквивалентных sp-ги-брида (линейные гибридные орбитали). Например, каждую связь С—Н в молекуле СН4 можно представить как электронную пару на локализованной связывающей молекулярной орбитали, образованной sp -гибрида-ми атома углерода и ls-орбиталями атомов водорода [схема связи (sp -I-+ Is)]. [c.595]

    Атом бора имеет три валентных электрона и четыре валентные орбитали. Обычно он использует три орбитали, образуя 5р -гибриды в таких соединениях, как ВРз- Углерод имеет четыре валентных электрона и четыре орбитали. За исключением тех случаев, когда он образует кратные связи, эти орбитали используются для 5р -гибридизации. Атом азота имеет пять валентных электронов и четыре орбитали. Как правило, он образует три связи с другими атомами в структурах с тетраэдрической конфигурацией, а четвертая гибридная 5р -орбиталь у него занята неподеленной электронной парой (разд. 13-3). Углерод и азот способны образовывать двойные и тройные связи в результате я-перекры-вания, обсуждавшегося в разд. 13-4. По сравнению с длиной простой связи длина двойных связей, образуемых этими элементами, сокращается на 13%, а длина тройных связей-на 22%. Прочность кратной связи повыщается благодаря наличию электронов на связывающей молекулярной п-орбитали, возникающей в результате перекрывания атомных я-ор-биталей. Но перекрывание я-типа между орбиталями становится достаточно больщим для возникновения связи только при близком расположении атомов. По этой причине 81 и другие элементы третьего и следующих периодов неспособны образовывать кратные связи. Кремний имеет 10 внутренних электронов по сравнению с 2 в атомах С и N. Отталкивание этих внутренних электронов не позволяет двум атомам 81 сблизиться настолько, насколько это необходимо для достаточного я-перекрывания р-орбиталей и возникновения двойных связей. Несмотря на все попытки химиков синтезировать соединения со связями 81=81 и 81=С, ни одна из них до сих пор не увенчалась успехом. За небольшими исключениями, образование двойных и тройных связей ограничено элементами второго периода, в атомах которых число внутренних электронов не превышает 2. Исключения, к числу которых относятся 8=0, Р=0 и 81=0, объясняются перекрыванием между р- и -орбиталями, этот вопрос будет рассмотрен в разделе, посвященном кремнию. [c.271]

Рис. 21-4. Трехцентровые орбитали в соединениях бора, а-каждый из трех атомов бора поставляет по одной орбитали (два атома 5р -гибриды и один атом р-орбиталь) для образования связывающей, несвязывающей и разрыхляющей молекулярных орбиталей. Одна электронная пара на связывающей орбитали удерживает все три атома вместе. Та- Рис. 21-4. <a href="/info/610583">Трехцентровые</a> орбитали в <a href="/info/280634">соединениях бора</a>, а-каждый из трех атомов бора поставляет по одной орбитали (два атома 5р -гибриды и один атом р-орбиталь) для образования связывающей, несвязывающей и разрыхляющей <a href="/info/1199">молекулярных орбиталей</a>. Одна <a href="/info/17890">электронная пара</a> на связывающей орбитали удерживает все три атома вместе. Та-
    Как видим, вклад Есп в суммарную затрату энергии на переход атома в валентное состояние весьма заметен и соизмерим с возв. Кроме того, орбитали атома в молекуле могут быть так или инаЧе гибриди-зованы, чему также соответствует определенная энергия Ягибр. Однако ее вклад как правило не превышает 20—60 кДж/моль, и им часто пренебрегают. [c.173]

    Здесь азот находится в аксиально-симметричном окружении, и следует ожидать только одну линию. Однако предполагается, что взаимодействия между цепями снижают симметрию окружения азота, и это приводит к двум спектральным линиям. Для Bг N можно записать различные резонансные формы, а величины e Qq указывают, что на броме находится формальный положительный заряд. Заметное увеличение e-Qq для брома наблюдается в твердом веществе по сравнению с газовой фазой, что может быть обусловлено увеличением вкладов структуры Вг СН в основное состояние в твердом веществе из-за стабилизации Вг за счет координации. Если связь Н - Вг—С описывается р -гибридом, то e Qq будет также увеличиваться за счет возросшего вклада -орбиталей в связь углерода с бромом. [c.278]


Смотреть страницы где упоминается термин Гибриды ДНК и РНК: [c.139]    [c.139]    [c.421]    [c.434]    [c.458]    [c.182]    [c.480]    [c.481]    [c.482]    [c.484]    [c.484]    [c.562]    [c.563]    [c.226]    [c.525]    [c.166]    [c.213]    [c.233]   
Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.15 , c.62 , c.64 , c.139 , c.155 , c.173 ]

Молекулярная биология (1990) -- [ c.15 , c.62 , c.64 , c.139 , c.155 , c.173 ]




ПОИСК







© 2024 chem21.info Реклама на сайте