Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аллотропные модификации

    Охарактеризовать аллотропные модификации углерода и указать причину различия их свойств. [c.235]

    Аллотропные модификации углерода отличаются химической активностью. Согласно энтальпиям образования наиболее ста- [c.187]

    Указать аллотропные модификации фосфора и различия в их свойствах. Сохраняются лн эти различия после перехода фосфора в газообразное состояние Как доказать, что красный и белый фосфор представляют собой аллотропные модификации одного и того же элемента  [c.231]


    Различие аллотропных модификаций углерода — яркий пример влияния кристаллического строения твердых веществ на их физические свойства. В графите атомы углерода расположены в параллельных слоях, образуя гексагональную сетку. Внутри слоя атомы связаны гораздо сильнее, чем один слой с другим, поэтому свойства графита сильно различаются по разным направлениям. Так, способность графита к расслаиванию связана с разрывом более слабых меж-слойных связей по плоскостям скольжения. [c.131]

    Наряду с исследованиями физических и химических свойств вновь открытых аллотропных модификаций углерода, активно продолжаются и [c.3]

    Никель образует две аллотропные модификации гексагональную a-Ni, существующую ниже 250°С, и p-Ni, имеющую гранецентрированную кубическую решетку. Палладий и платина кристаллизуются в гранецентрированной решетке. [c.607]

    Явление аллотропии может быть обусловлено либо различием состава молекул простого вещества данного элемента (аллотропия состава), либо способом размещения молекул или атомов в кристаллах (аллотропия формы). Способность элемента к образованию соответствующих аллотропных модификаций обусловлена строением атома, которое определяет тип химической связи, строение молекул и кристаллов. [c.254]

    В чем причина того, что аллотропные модификации простых вешеств не известны у галогенов  [c.20]

    Известно, что у галогенов нет аллотропных модификаций. Почему  [c.38]

    Атомы элементов группы VIA, например кислорода или серы, с валентной электронной конфигурацией имеют в валентной оболочке две вакансии и, следовательно, образуют друг с другом по две двухэлектронные связи. При нормальных температуре и давлении наиболее устойчивой формой элементарного кислорода являются двухатомные молекулы, тогда как сера в этих условиях существует в виде твердого вещества, две главные аллотропные модификации которого состоят из дискретных циклов Sg (рис. 14-3). Сера имеет еще две другие аллотропные модификации, одна из которых состоит из циклов Sf,, а другая содержит спиральные цепи из атомов S. [c.602]

    Кобальт имеет две аллотропные модификации. До 417°С устойчив а-Со (гексагональная решетка) выше 417°С — Р-Со (гранецентрированная кубическая решетка). Родий и иридий кристаллизуются в гранецентрированной кубической решетке. [c.595]

    Аллотропные модификации элемента характеризуются различной межатомной структурой и обладают различными физическими и химическими свойствами. [c.602]


    Охарактеризуйте термодинамическую возможность самопроизвольных превращений аллотропных модификаций фосфора. Используйте данные, приведенные в таблице. [c.133]

    В виде простых веществ никель и его аналоги — блестящие белые металлы N1 и Pt с серебристым, Р(1 — с сероватым оттенком. Никель образует две аллотропные модификации гексагональную а-М1, существующую ниже 250°С, и имеющую гранецентрированную кубическую решетку. Палладий и платина кристаллизуются в гранецентрированной решетке (см. табл. 33). [c.645]

    Не избежали молекулы-гиганты и преобразующей руки химика. Произошло это вначале случайно. В 1845 г. швейцарский химик Христиан Фридрих Шенбайн (1799—1868), уже прославивший себя открытием озона (аллотропной модификации кислорода), проводил опыты в своей домашней лаборатории. Разлив смесь азотной и серной кислот, он вытер эту смесь хлопчатобумажным фартуком и повесил его сушиться над печкой. Как только фартук высох, раздался несильный взрыв и фартука не стало. Сам того не зная, Шенбайн превратил целлюлозу фартука в нитроцеллюлозу .  [c.131]

    Элемент, проявляющий свойства как металла, так и неметалла, Полуметаллы в большинстве случаев имеют металлическую и неметаллическую аллотропные модификации. [c.14]

    Символ 8 коричневый порошок или темно-серые, очень твердые кристаллы однако обе формы не являются аллотропными модификациями с другими элементами реагирует лишь при высоких температурах устойчив к действию кислот, но реагирует с сильными основаниями с образованием силикатов и водорода. [c.153]

    Весьма сильно отличаются по свойствам аллотропные модификации олова белое олово, устойчивое при температурах выше +13° С, имеет плотность 7,3 г см-, серое олово, образующееся при охлаждении белого, имеет плотность 5,8 г см . [c.96]

    Однако молекула j имеет избыточные орбитали и недостаточное для их заполнения число электронов, поскольку вокруг каждого ее атома недостает электронов для завершения октета. Каждый атом углерода обладает тенденцией к образованию четырех двухэлектронных связей, как это видно на примере двух его основных аллотропных модификаций - алмаза и графита (рис. 14-5). По аналогичной причине Sij также является электроннодефицитной системой, которая не существует в виде индивидуальных молекул в кристаллическом кремнии. Структура кристаллического кремния скорее напоминает структуру алмаза (рис. 14-5,а). [c.603]

    Единственным элементом группы 1ПА с неметаллическими свойствами является бор, атомы которого имеют валентную конфигурацию 2з 2р . У элементарного бора существуют три основные аллотропные модификации, у каждой из них каркасная структура построена из групп 812- Такая элементарная ячейка В,2 имеет икосаэдричсскую форму, изображенную на рис. 14-6. В различных аллотропных модификациях бора икосаэдры В , связаны между собой по-разному, но во всех трех случаях связи между индивидуальными икосаэдрами слабее, чем связи в пределах одного икосаэдра, где каждый атом связан с пятью другими. [c.604]

    Один и тот же элемент может образовывать несколько разных типов простых веществ, называемых аллотропными модификациями. В настоящее время известно свыше 400 разновидностей простых веществ. [c.254]

    Все элементы VI группы способны существовать в нескольких аллотропных модификациях. Для кислорода из двух аллотропных модификаций, отличающихся числом атомов, из которых состоит молекула простого тела, форма озона О3 при обычных условиях малоустойчива. Различные аллотропные модификации серы также отличаются друг от друга числом атомов в молекуле и их взаимным расположением (обычной — ромбической — сере отвечают кольцеобразные молекулы Зд). [c.69]

    Простые вещества. Важнейшие аллотропные модификации [c.303]

    При определении энтальпии образования простых веществ, имеющих аллотропные модификации, за нуль отсчета принимают, как правило, наиболее термодинамически устойчивую модификацию (графит, белое олово, ромбическая сера). [c.65]

    Один и тот же элемент может образовывать несколько разных типов простых веществ, называемых аллотропными модификациями. В настоящее время известно свыше 400 разновидностей простых веществ. Явление аллотропии может быть обусловлено либо различным составом молекул простого вещества данного элемента (аллотропия состава), либо способом размещения молекул или атомов в кристаллах (аллотропия форм ы). Сгюсобность элемента к образованию соответствующих аллотропных модификаций обусловлена строением атома, которое определяет тип химической связи, строение молекул и кристаллов. [c.232]

    Аллотропная модификация фосфора - белый (иногда его называют желтый) фосфор входит в состав напалма - боевого зажигательного вещества, применение которого приводило к многочисленным летальным исходам. Наличие фосфора в смеси напалма объясняется его способностью к самовоспламенению на открытом воздухе. Фосфор - это твердое вещество с т. пл. 44 °С, поэтому его транспортируют обычно в жидком виде. Эффект ожога от фосфора значительно усиливается, если на пораженный участок тела попадает несгоревший белый фосфор [Brown,1978]. [c.449]


    Название сложного вещества согласно его формуле читается справа налево ЫаНСОз — гидрокарбонат натрия, Ы1 — иодид лития. Простые вещества называют, как правило, по названию соответствующего элемента натрий, сера, ртуть, золото. Аллотропные модификации указываются дополнительно, например белый фосфор, а-олово, или имеют специальное название озон Оз. [c.96]

    Сислород (лат. oxygenium) в природе имеет три устойчивых изотопа 0, О и О, среднее содержание которых 99,759, 0,037 и 0,204% от общох- о числа атомов кислорода соответственно. В свободном состоянии встречается в виде двух аллотропных модификаций — кислород О2 и озон Оз. [c.110]

    Фосфор образует целый ряд ал.чотропных модификаций. Г.тав-ные из них — белый, красный и черный фосфор. Фнокческие свойства аллотропных модификаций фосфора приведены в таблице 27. При высоких давлениях можно получить еще несколько аморфных модификаций фосфора. [c.125]

    Родоначальник подгруппы — углерод (лат. сагЬопеит) существует в свободном виде в двух аллотропных модификациях — графит и алмаз,— резко различающихся по строению и свойствам (см. ниже). Углерод — один из важнейших элементов в природе. Его соединения составл.чгот основу живей природы — флоры и фауны. [c.130]

    Олово 8п существует в виде двух аллотропных модификаций — неметаллическая форма а-8п (серое олово), устойчивая ниже 13,2 °С и металлическая форма Р-8п (белое олово), устойчивая выше 13,2 °С. Эти модификации отличаются структурой, что в свою очередь связано с электронным строением атома олова. Серое олово имеет алмазоподобную структуру и является изолятором, причем атомы олова находятся в состоянии зр -гибридизации (конфигурация 4с( 58 5р ). Белое олово имеет слоистую структуру и обладает металлической проводимостью, причем атомы олова находятся в состоянии sp -гибpидизaции (конфигурация 4с( 58 5р ). Такое различие в характере гибридизации и в типе структуры соответствует классическим валентностям IV в сером олове и II в белом. Действительно, если растворить серое олово в соляной кислоте и раствор выпарить, то образуется ВпСи-бНоО, если ту же операцию проделать с белым оловом, то в остатке получается 8пСЬ-2Н20, что экспериментально подтверждает приведенное выше объяснение. [c.140]

    Поэтому для серы возможны аллотропные модификации. В обычных условиях паиболее устойчива форма молекулы в виде зиг агообразпой цепочки, замкнутой в восьмичленное кольцо 5я. Из таких молекул состоит ромбическая сера. [c.182]

    Энергия плазменных колебаний валентных электронов в трех аллотропных модификациях углерода отличается [1] для алмаза Шр=34 эВ, для графита С0р=27 эВ. Для третьей аллотропной формы - карбина - энергия (а-иг)-плазмона, полученная в разньп( работах [1-2], различна (22-24 эВ). Однако для ряда карбнноидов из рентгенофотоэлектронных спектров ls-лннии углерода с плазменным сателлитом нами получено значение энергии плазмона 20.6+0.4 эВ. [c.47]

    В настоящей работе исследуется новая аллотропная модификация yrлqюдa -ГЦК - углерод, полученный различными методами в условиях ионно-сгимулированной конденсации углерода [1], в процессе травления пленки иолиЕфисталлического алмаза в плазме водорода [2], методом плазмо-химического синтеза из углеродной плазмы [3]. [c.178]

    Отжиг ГПУ фазы в вакууме в течение нескольких часов вплоть до температуры 1100 К не приводит к фазовому переходу в более стабильную ГЦК фазу наблюдается уже распад углеродного каркаса молекул С60 так же, как и в ГЦК фазе. Удалось показать, что гидростатическое сжатие (1,8 ГПа) не приводит к фазовому переходу. Фазовый переход происходит в условиях сдвиговой деформации, реализуемой при одноосном сжатии (0.5-3 ГПа) и при механическом растирании. Характеристики перехода ГПУ => ГЦК позволяют говорить о его сходстве с превращениями в других аллотропных модификациях лонсдейлит => алмаз. [c.189]

    Фуллерены являются единственной из трех известных в настоящее время аллотропных модификаций углерода (графит, алмаз, фуллерены), которые обладают растворимостью в широком классе органических растворителей [20]. Такая особенность фуллеренов связана с их молекулярной структурой, в отличие от сшитых полимерных сеток графита и алмаза. Свойство растворимости фуллеренов имеет широкое практическое применение. Прежде всего - в процессах выделения фуллеренов из продукта термического разложения графита в электрической дуге - фуллеренсодержащей сажи, а также при разделении смесей фуллеренов различного сорта, например, гюсредством хроматофафических методов. Фуллеренсодержащая сажа (Ф-сажа) представляет собой мелкодисперсный порошок черного цвета, основную долю которого (80-90 % по массе) составляет аморфный углерод. Остальные 10-20 % по массе Ф-сажи составляют фуллерены (80-95 % С60, 5-20 % - С70 и следовые количества высших фуллеренов - С7б, С78, С84, до С100). При обработке Ф-сах<и органическими растворителями (эксфакции) фуллерены количественно переходят в раствор, тогда как мафица из аморфного углерода является нерастворимой частью Ф-сажи. [c.40]

    Пол1.зуяеь справочной частью, найдите как можно больше простых веществ, которые образуют аллотропные модификации. Сопоставьте свойства различных аллотропных модификаций одного к того же вещества и попробуйте объяснить эти рачличня. [c.70]


Смотреть страницы где упоминается термин Аллотропные модификации: [c.151]    [c.603]    [c.181]    [c.3]    [c.104]    [c.91]    [c.69]    [c.260]   
Смотреть главы в:

Реакции серы с органическими соединениями -> Аллотропные модификации


Химия (2001) -- [ c.19 ]




ПОИСК







© 2025 chem21.info Реклама на сайте